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Abstract—Blockchain has widely been adopted to design ac-
countable federated learning frameworks; however, the existing
frameworks do not scale for distributed model training over
multiple independent blockchain networks. For storing the pre-
trained models over blockchain, current approaches primarily
embed a model using its structural properties that are neither
scalable for cross-chain exchange nor suitable for cross-chain
verification. This paper proposes an architectural framework for
cross-chain verifiable model training using federated learning,
called Proof of Federated Training (PoFT), the first of its kind
that enables a federated training procedure span across the
clients over multiple blockchain networks. Instead of structural
embedding, PoFT uses model parameters to embed the model
over a blockchain and then applies a verifiable model exchange
between two blockchain networks for cross-network model train-
ing. We implement and test PoFT over a large-scale setup using
Amazon EC2 instances and observe that cross-chain training
can significantly boosts up the model efficacy. In contrast, PoFT
incurs marginal overhead for inter-chain model exchanges.

Index Terms—federated learning, blockchain, interoperability

I. INTRODUCTION

Federated Learning (FL) frameworks [1] have widely been
deployed in various large-scale networked systems like Google
Keyboard, Nvidia Clara Healthcare Application, etc., employ-
ing distributed model training over locally preserved data, thus
supporting data privacy [2]. A typical FL setup proceeds in
rounds where individual clients fetches a global model to train
them locally and independently, consuming their own data
sources. The clients then forward these local models to a server
that aggregates them using an aggregation strategy and updates
the global model, and this entire procedure runs in iteration.
Such a framework is useful when multiple organizations need
to collectively train a Deep Neural Network (DNN) model
without explicitly sharing their local data [3], [4]. However,
FL is prone to a wide range of security attacks [5]–[8]. Conse-
quently, different works [9]–[13] have developed accountable
FL architectures where different versions of the models, along
with the model execution steps, are audited over a distributed
public ledger, primarily a permissioned blockchain-based sys-
tem [14] to make the model training stages accountable and
verifiable. In a blockchain-based decentralized FL architecture,
the clients collectively execute the server as a service over
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the blockchain. The local models from the client, along with
the global models generated at each iteration of the FL, are
recorded over the blockchain, ensuring accountability of the
models by letting clients verify any of the local/global models
with public test data [12].

However, the existing approaches for decentralized FL
over blockchain do not scale when the organizations running
the FL clients are part of multiple independent blockchain
networks. With blockchain networks running in a silo, the
organizations can subscribe to one or more such networks
to obtain specific services. For example, several application
services, like MedicalChain1, Coral Health2, Patientory3, etc.
use their individual blockchain networks to store patient data
and apply deep learning techniques to process the data over the
blockchains. Interestingly, these networks contain data from a
similar domain (e.g., patients’ medical imaging data), and the
features learned can be exploited to develop a rich disease
diagnosis model by a service like Clara Medical Imaging4.

A concrete use case where FL over multiple blockchains can
be used in practice exists in medical domain [15] (shown in
Fig. 1), where a group of hospitals use Clara Medical Imaging
over a Blockchain-based distributed ledger network5 to train
and use a model for a personalized recommendation to the
doctors based on clinical symptoms. Let another group of
diagnostic centers use Clara for real-time endoscopy, and these
diagnostic centers form another blockchain network. Now,
patients may visit the diagnostic center on recommendation
from the hospital, whereby the endoscopy imaging data can
be shared between the diagnostic center and the network
of hospitals (by maintaining appropriate privacy and data
accountability via FL, as used in Clara) to make the model
learn better and assist the hospital doctors in clinical diagnosis.
However, there is a reluctance to share the complete internal
data with each other across the silos, but wish to share only
parts of the entire data. The open research question is how
can we help the Clara FL model to get trained over both the
networks jointly?

Not only in medical domain, similar use cases exist in
agri-tech [16] where a model is trained to predict yield

1https://medicalchain.com/ (Access: March 21, 2022)
2https://mycoralhealth.com/product/ (Access: March 21, 2022)
3https://patientory.com/ (Access: March 21, 2022)
4https://developer.nvidia.com/clara (Access: March 21, 2022)
5https://blogs.nvidia.com/blog/2019/12/01/clara-federated-learning/978-1-6654-9538-7/22/$31.00 ©2022 IEEE



Fig. 1. An Example Use-case of PoFT

production in a given season and the raw data is usually not
transferred across silos. Use cases in banking sector [17] also
has a substantial market in the domain of cross-silo federated
learning, where a credit card fraud detection is one of the
major conundrum.

To share a model among multiple blockchain networks,
the primary requirements to be satisfied are as follows. (1)
Every blockchain network should be able to independently
verify individual versions of the global model (for an FL
setup) received from another blockchain network without
any dependency on previous versions. (2) The cross-network
transfer and in-network update of the global model versions
should run asynchronously. (3) The cross-network transfer
protocol should be Byzantine-safe by design to prevent clients
from exhibiting Byzantine behavior. Interestingly, the first two
requirements are not satisfied by the existing blockchain-based
decentralized FL frameworks [9]–[13] that use a structural
representation of the model by storing the layers and ac-
tivations as assets over the blockchain. When DNN struc-
tures change, multiple assets of previous versions need to
be transferred across networks for cross-chain verifiability,
since a blockchain asset storing structural representation is
not verifiable independently, which is not feasible in practice.
Although blockchain interoperability and cross-chain asset
transfer protocols [18]–[23] address the third requirement as
mentioned above, they do not ensure distributed control over
the model training and transparency in the training process
that will help prevent attacks such as model poisoning.

This paper proposes Proof of Federated Training6 (PoFT),
the first of its kind cross-chain scalable federated training
framework that can work over multiple blockchain networks.
PoFT framework decouples model update from model verifica-
tion; thus with asynchronous updating of models and running
of blockchain services. We design a verifiable representation
of DNNs as learning assets over a blockchain, which can
seamlessly be transferred from one network to another with-
out having any dependency on the model update stages or
versioning of the global models. Further, PoFT utilizes the

6Here, we do not use the notion of ‘proof’ similar to a consensus algorithm
like PoW or PoS; We provide an audtibale system and hence, the apellation.

model parameters (the weight vector) to represent the learning
assets replacing the structural embedding of the model while
ensuring its standalone verifiability. Finally, PoFT provides a
method for cross-chain transfer and verification of the learning
assets, enabling the clients of different blockchain networks to
update their local models as well as the corresponding global
model version based on the pre-trained global models from
other networks. We implement a large-scale test network over
Amazon AWS to analyze the performance of PoFT with an
image classification task using 4 different DNN models. From
a thorough analysis of the models with a varying number of
clients (10 to 40) under each blockchain network, we observe
that PoFT is scalable. It is comforting to see that even for huge
DNN models like Residual Network (ResNet-18) having more
than 10million parameters, PoFT can complete each round of
model updates within a few minutes, whereas transferring and
verification of the model from one network to another take
∼ 0.5 min and ∼ 2.5min, respectively.

II. RELATED WORK

The primary components that form the backbone of
PoFT are based on Federated Learning [24], [25] and
blockchain [26]. FL has been widely adopted in practice
for use cases where the data resides with individuals, but a
machine learning model is trained in a distributed fashion.
Being a distributed mode of training, the accountability and
trustworthiness of individual data sources remain a question.
As blockchain [26] provides a secure and trustworthy decen-
tralized public ledger platform for data and asset sharing, a
large number of existing works have adopted the blockchain
technology to design frameworks for accountable FL [27]–
[29]. However, these works use blockchain as a separate
service over FL, which causes latency issues. Also, they
target a single blockchain framework, and hence no verifiable
learning assets are designed that can be transferred across
silos. A few more recent works, as listed in Table I, though
addresses some of these shortcomings, including improving
latency, are still not sufficient for cross-chain model transfer.

TABLE I
COMPARISON OF PREVIOUS WORKS

Accountable FL
Private

Blockchain
Verifiable

Assets
Independent
Verification

Cross-
Chain FL

BlockFLA [7] ✗ ✗ ✗ ✗
Deepring [9] ✓ ✗ ✗ ✗

Deepchain [30] ✓ ✗ ✗ ✗
Baffle [11] ✗ ✓ ✓ ✗

VFchain [12] ✓ ✓ ✗ ✗
PoFT ✓ ✓ ✓ ✓

However, none of these works are targeted for cross-chain
federated training. With individual enterprises operating on
different blockchain platforms in silos, there is a need for
interoperation among these respective networks. Hence, a
trusted system of cross-chain interoperation involving multiple
blockchains is deemed necessary.

Blockchain interoperability and cross-chain asset transfer
have also been focused on in the recent literature [21]. These



methodologies try to transfer operation flow by allowing
clients of a separate network to download the asset and
store them in their own local ledger. It is easier to transfer
assets within two public blockchains since any client can
join the network and alter the state of the blockchain. Het-
erogeneous blockchain interoperability has been studied in
[22], [23]. IBM has used relay service and additional smart
contracts [19] to verify the document transferred among per-
missioned blockchains. Cryptographic signature mechanisms
to digitally sign the documents like Collective Signature [20]
ensure verifiability. However, their system modeling does not
optimize the design to enable cross-chain federated training for
learning a model. Thus, our objective varies from the above
works to optimize the interoperability architecture between
two permissioned blockchains to train a learning model col-
lectively after the transfer of assets.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

Let us define a formal setting where there be two indepen-
dent networks N1 and N2 that independently maintain their
own permissioned blockchain networks, B1 and B2, respec-
tively, to train DL models using a decentralized FL framework.
Each network has a set of enterprises {E1

N1
, E2

N1
, . . .} ∈ N1

and {E1
N2

, E2
N2

, . . .} ∈ N2 that run the FL client service
over the respective blockchain of their networks. The precise
objective of PoFT is to support interoperability between B1

and B2, such that the assets containing global model versions
can be shared among the clients of N1 and N2 to develop
an aggregated global model while utilizing the rich volume of
data available across all clients in N1 and N2.

Fig. 2. Federated Training of Neural Networks Across Two Blockchains

A. Why Do Existing Models Fail?

To support cross-network model training using existing
approaches, a general approach is to independently train the
model partially over a network (say N1), and then transfer
the partially trained models from N1 to N2 using existing
blockchain interoperability solutions, such as [19]. However,
how can we represent the partially-trained models in a ver-
ifiable format such that the same can be stored over the
blockchain and transferred from N1 to N2. A naive idea for

Fig. 3. Figure shows a simplified design of the Federated Learning architec-
ture and illustrates the working procedure of uploading the learning models
in the form of asset from a federated network to the blockchain network.

such representation is to condense the learning algorithm or
the neural network model as a state machine or an automata
(by representing each neuron or each layer of the model as a
state or as a block in the blockchain [9]) which can then be
governed by transition rules [31], [32], which can be translated
to form a smart contract. However, such a formulation is not
feasible since the number of neurons can be very large and
it is not straightforward to represent the learning algorithm
(backpropagation, gradient descent, etc.) in terms of state
machine.

B. Solution Overview

PoFT contains two primary components in its end-to-end
architecture – (1) An FL platform over individual networks
N1 and N2 (as shown in Fig. 2) to train local models
independently and update global model versions within each
blockchain network, and (2) A relay service for verifiable
transfer of learning assets from N1 to N2, and vice-versa.

Fig. 3 shows an overall view of the different architectural
components of PoFT. At its core, we have a set of clients
that own the data and maintain the local models. The clients
are connected to a blockchain platform and fetches the latest
version of the global model from the blockchain and update
their local models by retraining them over the new data.
These local models are forwarded to the blockchain, and the
Aggregator Server Contract, a smart contract to aggregate
local models is triggered to aggregate them. PoFT uses Fed-
erated Averaging [24] for model aggregation, although any
aggregation method can be used. Once the aggregated global
model is updated in the blockchain, the next iteration of the
FL starts.

A critical aspect of this design is that the clients and the
Aggregation Server Contract need an ordering service over
two-way communication, as the smart contract needs to update
the global model after the clients forward their local models.
Similarly, the clients should start the next iteration once the
smart contract aggregates the local models and generate the



global model. To synchronize the operations among the clients
and the Aggregation Server Contract, we use an ordering
service using an event streaming platform.

C. Event Streaming for Ordering Local/Global Models

We have employed an event streaming platform among the
clients and the Aggregation Server Contract in a publisher-
subscriber setting for ordering different versions of the model.
The clients use this streaming channel to publish the local
models after each update. Once the local models from all
the clients (or a predefined number of clients, to address
stragglers) are available on the stream queue, the Aggregation
Server Contract is triggered to generate the global model
by aggregating the local models. Once the aggregated model
is available, it is published over the streaming channel, and
the clients can subscribe to the message from the stream
queue to look for the updated global models. For straggling
clients that are not up-to-date with the current updated model,
the streaming platform provides flexibility to store multiple
versions of the global model in the subscribed stream queue,
from which the client can choose the latest/preferred version
of the model. Though the streaming infrastructure provides a
comprehensive platform to share global and local models, a
couple of open challenges need to be addressed for executing
the framework in practice – (1) representation of learning
assets within a blockchain and (2) cross-chain transfer of
assets corresponding to global model versions for extending
the federated training across multiple networks.

IV. REPRESENTATION OF LEARNING ASSETS

As mentioned earlier, existing works [9]–[13] primarily
advocate for a structural embedding of a DNN as an asset
to be stored in the blockchain. This section first analyzes why
such structural embedding does not work when the learning
assets need to be transferred from one blockchain to another.

A. Pilot Study – Effect of Structural Embedding

We first present an elementary pilot study to demonstrate
that a structural embedding of the DNN as a learning asset
is not suitable for cross-chain model training. For this pur-
pose, we employed two learning CNN models with a similar
backbone VGG structure. The two models differed in the con-
volution layers applied; while Model-1 used 3×3 convolution
kernels, Model-2 is a compressed version of Model-1 and used
Fire modules [33] in place of convolution layers to reduce
the number of model parameters. The models were trained on
Cifar-10 dataset for a total of 300 iterations. The batch size
employed for the experiment was 16 in both cases. We have
used Hyperledger Fabric as the blockchain network with only
2 client nodes (the minimum size of any network).

The implications of the two models during model training
are tabulated in Table II. In the table, the ‘Asset Size’ re-
ported refers to the size of the JSON file storing the model
representations, while ‘Insert Time’ is the time it takes to
insert the asset structure into the blockchain. We consider two
embeddings of the model for the representation of an asset in

TABLE II
PERFORMANCE MEASURES FOR INSERTING A FL MODEL IN A

BLOCKCHAIN

Model-1 Model-2
Accuracy 53.92% 47.46%

#activations 89866 144394

Structure Embedding
( [9], [13])

#layers 15 37
Asset Size 98.24MB 50.01MB
Insert Time 229.291 s 102.452 s

Parameter Embedding
(PoFT)

#parameters 865482 188002
Asset Size 19.9MB 4.5MB
Insert Time 48.823 s 9.693 s

the blockchain. (a) Structural embedding: the pixel activation
and the layers of the global model are embedded using existing
approaches such as [9], [13]. (b) Parameter Embedding: the
weights/gradients of the model learned during the training
are embedded as the asset structure. From the table, we
observe that structural embedding costs significantly in terms
of asset size and the time required to insert the asset in the
blockchain. With increasing size of the model, the number of
activations and layers increases, and often becomes intractable.
However, if parameters are used, which can be shared over
few activations, or even layers, the asset size decreases. This
change in asset size is evident in deeper models than in the
shallow ones. This cost increases drastically when multiple
versions of the global model need to be exchanged between
blockchains for verifiablity purpose. Consequently, parameter
embedding gives a better alternate for an asset representation
and a compression technique like [33] applied on the Model-2
helps reduce the asset size and insert time further.

Problem with Parameter Embedding: Although parame-
ter embedding reduces the asset size significantly, one major
limitation of it is that the parameters learned during an iteration
displays partial information and cannot alone ensure verifia-
bility. Therefore, additional information must be included with
the asset structure to verify that the model weights/gradients
indeed provide a correct representation of the model.

B. Asset Representation with Model Parameters

Based on the above analysis, the asset structure in PoFT
represents additional parameters which are essential to verify
the correctness of the model. The core idea is to use the
standard logic of model validation, as widely used during
the development of DL models, for the verification purpose.
Every network typically exposes a public validation dataset
contributed by its clients, to validate the global model gen-
erated at each iteration. It can be noted that the idea of
using an anonymized public validation dataset for FL model
validation is well adopted in the existing literature [34], [35]
and also used for detecting attacks like model poisoning [8],
[36]. We adopt this idea for model parameter verification.
Thus, the asset includes (a) the model parameters, i.e., the
weights/gradient learned during an iteration, (b) the model
hyperparameters, (c) random seed and the optimizer used, (d)
a pointer to the public test dataset, and (e) metrics as observed
by the client/updater during local/global model training and
testing. Further, a learning asset is digitally signed by the client



Fig. 4. Control Flow for Cross-Chain Interoperation of Assets (denoted by
red numbered arrows) between two permissioned Blockchain networks.

(for local model updates) or a set of clients as endorsers (for
global model updates, details in Section V).

C. Verification Logic

PoFT uses the public validation data to validate the model
for verifying the learning assets. If the computed accuracy by
executing the model with the stored hyperparameter config-
urations within the asset is less than the accuracy reported
within the asset, the corresponding asset is discarded. We use
the idea of model reproducibility [37] here, which ensures
that the model should not deviate from the reported accuracy
and loss when executed with the same dataset with the same
hyperparameter configurations. Apart from the logic verifica-
tion, PoFT also verifies the digital signatures that endorse a
particular asset representing a learning model.

V. CROSS-CHAIN TRANSFER OF LEARNING ASSETS

The final component of PoFT is a protocol for cross-chain
asset transfer and its verification. Fig. 4 shows a schematic
diagram explaining this process. Indeed, the design of PoFT
makes this component simple, where we augment an exist-
ing interoperability architecture [19] for asset exchange and
verification in sync with the model updates.

A. Transfer Protocol - Asset Exchange

Considering two networks N1 & N2 and the corresponding
blockchains B1 & B2, the network clients initiate this asset
exchange and work as a relay (by running a relay service)
between the two networks. Considering the use-case as de-
picted in Fig. 1, one of the hospitals in the Hospitals’ network
and one of the diagnostic centers in the Diagnostic Centers’
network can establish this relay communication to exchange
the most updated learning assets between the two networks.
We assume the existence of an Identity Interoperable Network
(IIN) as a blockchain service similar to [38], which helps the
clients to access the identity (public key) of the other clients in
a different network. Based on the identity information, client
E1 ∈ N1 requests for the most recent global model (or a
specific version of the global model) from the client E2 ∈ N2

through the local relay service of N1 (Step 1). The relay
service of N1 then serializes the message received from E1

and send it to the relay service of N2 (Step 2), where it is
decoded to extract the parameters, like the model version, etc.
(Step 3). The relay of N2 then initiates a transaction to B2 to

access the most recent global model (or the requested version);
the transaction goes through the local blockchain consensus
of B2 (Step 4). To prevent the relay from exhibiting any
Byzantine behavior, we trigger a blockchain transaction and
pass it through a local consensus rather than directly fetching
the model from the blockchain.

In response to the transaction against a cross-chain ac-
cess request, the blockchain B2 triggers a local service (a
smart contract). Through this service, the requested asset
(the global model corresponding to the version requested)
passes through a Byzantine agreement based on the Collective
Signing (CoSi) [20], [39] protocol (Step 5). In CoSi, the
majority of the peers collectively sign the asset using use
Boneh-Lynn-Shacham (BLS) [40] cryptosystem to ensure that
the correct asset is being transferred to the other network; the
details of the protocol can be found in [41]. Finally, the relay
of N2 communicates the signed asset to the corresponding
relay of N1 (Step 6) along with the verification credentials
(public keys of the signees). Finally, after Byzantine agreement
to verify the asset received from N2 (Step 7), the client
application E1 ∈ N1 updates its learning asset to its local
blockchain (Step 8). We next discuss the verification process.

B. Verification Process
The verification protocol needs to verify two things – (1)

the received learning asset has passed through the CoSi-based
Byzantine agreement from N2, and (2) the asset contains
the correct model parameters. For (1), the clients use the
IIN to fetch the public keys of N2’s clients and use the
CoSi verification [20] using the BLS cryptosystem. As noted
in [41], CoSi verification using BLS signatures is extremely
fast and scalable; therefore, this verification round is much
light-weight. For (2), the clients uses the Verification Logic as
discussed in Section IV to verify the received model weights
using the additional parameters from the received learning
asset. One critical aspect is the access to the public validation
data maintained by the clients of N2. There can be multiple
solutions, like (i) use the same Byzantine agreement protocol
to transfer a hash and a pointer of the public validation data
from N2 to N1, or (ii) use the IIN to access a pointer to
the public validation data. In our implementation, we use the
second approach.

C. Cross-chain Training
As PoFT uses an ordering service to store and retrieve the

models from the blockchain, this step is pretty straightforward.
Once a pre-trained global model from N2 is available on B1,
the clients of N1 can use that global model to update their
local weights and trigger Aggregation Server Contract for the
global model update. The Aggregation Server Contract can
then aggregate the local models to construct a new version of
the global model capturing the learned parameters from the
clients of both networks.

VI. EXPERIMENTAL SETUP

We have implemented PoFT as a standalone toolbox and
tested it thoroughly over large networked systems deployed



through multiple container networks, with 10 to 40 Docker
containers representing FL clients. The entire experiments
have been executed over 9 Amazon EC2 T2.2Xlarge instances
having octa-core CPU with 32GB memory running on 3GHz
Xeon processors. Each of these EC2 instances hosts multiple
Docker containers restricted to a single CPU-core and a
maximum of 2GB memory, with the associated federated
training service running over them.

A. Design Specifics

We use the Hyperledger Fabric7 version 2.2.0 to implement
the blockchain networks. Every docker container runs one
Fabric client service to connect to the blockchain network.
The containers execute the FL client module and use the Fabric
API to initiate transactions for storing or retrieving the assets.
We use an overlay network based Docker Swarm8 spanned
over the EC2 instances to interconnect the containers. We kept
the network bandwidth between two containers in a Docker
overlay network within 1 to 5 Gbps, which is the typical
minimum bandwidth used in enterprise networks. Each silo
has a separate swarm, where the containers within each swarm
use a single Fabric overlay network.

The Fabric-go-sdk limits the size of the byte array encoded
within a single transaction to around 1.2MB. However, the size
of the PoFT learning assets vary depending on the number
of parameters used in the model. Therefore, we segment
a learning asset into multiple fragments of 800KB each.
Since each asset must be stored with a unique ID, we store
each fragment with an ID {Asset ID, Fragment Number}.
Consequently, during the cross-chain asset transfer, the relay
service retrieves all the fragments of an asset and then stitches
them to form a single asset. We used Kafka9 publish/subscribe
platform for event streaming that runs the ordering service over
the Fabric clients.

B. Dataset and Learning Models

To train the learning models via FL, we have used Cifar-
10 dataset [42] containing 50k training and 10k test images;
image sizes are 32 × 32 and are divided into ten classes.
The complete training dataset is distributed identically and
independently (i.i.d) among the FL clients, such that each
client has an almost equal number of images from each class.
The clients then use their respective datasets for training with a
train-test split of 0.1. Hence, the entire dataset has three logical
partitions: a local train set & a local test set for each client
and a global test set. To evaluate the effectiveness of the cross-
chain transfer training, we perform an image classification
task on various models using Cifar-100 dataset [42], which
is similar to Cifar-10, but the images are divided among 100
fine categories and 20 coarse sub-categories. We use the coarse
categories for labeling and evaluation.

7https://www.hyperledger.org/use/fabric (Access: March 21, 2022)
8https://docs.docker.com/engine/swarm/ (Access: March 21, 2022)
9https://hyperledger-fabric.readthedocs.io/en/release-2.2/kafka.html

(Access: March 21, 2022)

We use four different models to evaluate the performance of
PoFT – (1) SimpCNN, a 6-layer convolution neural network
(CNN) model (3 × 3 kernel) with the structure of conv32-
conv32-pool-conv64-conv64-pool-conv128-conv128-pool fol-
lowed by a feed-forward dense hidden unit of 256 neurons
and an output layer, (2) CompVGG, a compressed version
of the VGG-11 [43] model having a total of 7 “convolution”
layers with a backbone of conv32-pool-conv64-pool-conv128-
conv128-pool-conv128-conv128-conv128-pool where the con-
volution layers are replaced by the Fire module inspired by
SqueezeNet [33], (3) MobileNet-V2 [44], a practical large
scale CNN for mobile visual applications, and (4) Resnet-
18 [45], an 18-layered large-scale CNN model used in many
practical visual applications. MobileNet-V2 and Restnet-18
are particularly used to analyze the cross-chain model transfer
overhead for large models.

C. Hyperparameters Tuning and Performance Metrics

We use synchronous FL training, where the version of the
global model is updated after every global round. Each global
round includes 2 local iterations. For the model training, we
have used Sparse Categorical Cross-Entropy as the loss and
Adam Optimizer with a learning rate of 0.001.

To record intra-chain performances, we measure the Ac-
curacy and Loss of the learning models for evaluating their
performance at four different points of execution. (i) Pre-
Test is the metric recorded on the global model on the global
testset. (ii) Pre-Val is recorded on the global model on each
client testset, averaged over all the clients. (iii) Post-Test is
the metric value recorded on the individual client models on
the global testset, averaged over the number of clients. (iv)
Post-Val is recorded on the individual client models on each
client testset, averaged over the number of clients. To analyze
the overhead during cross-chain asset transfer, we report the
latency incurred to create an asset, the asset retrieval time, the
time needed for CoSi-based Byzantine agreement, and finally,
the time for model verification.

Unavailability of Baselines: It can be noted that to the best
of our knowledge, PoFT is the first of its kind that proposes
a cross-chain model training framework. As we have shown
in Table II under Section IV, existing works for accountable
FL are not suitable for cross-chain training, as they use a
structural embedding of the model to represent an asset. So, we
do not compare the performance of PoFT with other existing
approaches to avoid unfair comparison.

VII. EVALUATION

We evaluate PoFT from three different aspects – (a) the
overall performance of the FL system, (b) the efficacy of the
transferred weights, and (c) the transfer overheads.

A. Performance of Federated Learning System

With our main motivation being cross-chain transfer and
the validity of the weights transferred, we evaluate how FL
performance changes on varying settings, and not the validity
of FL itself by comparing with centralized training. Fig. 5



(a) SimpCNN - 10 Clients (b) CompVGG - 10 Clients

(c) SimpCNN - 40 Clients (d) CompVGG - 40 Clients

Fig. 5. Comparison of accuracy metrics for both models against version
numbers

shows the accuracy metrics as explained earlier for the two
models – SimpCNN and CompVGG. We employed a batch
size of 32 for both models. From the figure, we observe that
the Pre-Test accuracy is higher than the Post-Test accuracy;
that is, the accuracy of the aggregated global models surpasses
that of the individual trained local models. This shows that
aggregation of the weights via federated averaging results in
better learning of the model. The result is consistent across
different number of clients. To explain this behavior, we
hypothesize that aggregation provides a regularizing effect
since no client model gets overfitted on their local dataset,
hence, the model accuracies improve on aggregation than just
on the individual learned model. We observe that SimpCNN
exhibits higher accuracy than CompVGG since the former
is a comparatively larger model (details in Table III). It is
to be noted that the version number is incremented after
the Aggregation Server Contract aggregates the local models
received from the clients.

However, we observe that when trained with 10 clients, the
model exhibits higher accuracy as compared to with 40 clients.
Interestingly, we notice that the average global round duration
for both the models is lower for the latter (3 min 23 sec in
CompVGG and 4 min 39 sec for SimpCNN). This is because
with a total of 50k training images, and an increase in the
number of clients, each client receives a lower number of local
data points. Hence, the local model takes less duration for an
epoch but overfits the dataset, lowering the efficacy.

B. Evaluating Efficacy of Transferred Weights

After the successful transfer of signed learning assets
among blockchain networks, the receiving network can use
the weights to train a learning model on possibly, a different
dataset. Here, we experiment the efficacy of the transferred
weights through a transfer learning task. As already estab-

lished, we retrain an image classification model on the Cifar-
100 dataset with coarse labels as the targets. We first report
how the transferred weights perform as an initialization of
the SimpCNN model, that helps us understand how well the
weights already trained for the same model work on a different
dataset. As a baseline, we train SimpCNN from scratch, with
random initialization, and no weight transfer. We plot the
results for the same in Fig. 6.

(a) (b)

Fig. 6. Accuracy and Loss(Training and Testing) of SimpCNN on Cifar-
100 dataset trained from scratch as well as initializing the model with the
transferred weights.

We notice that the results of training and testing accuracy
of SimpCNN on the Cifar-100 dataset resonates with the
performance of SimpCNN on the Cifar-10 dataset. Similar to
the observation reported in Section VII-A, SimpCNN performs
better when it was initialized with the transferred weights
trained on the model via a federated setup of 10 clients than
when the initialization was done with the weights trained via
federated setup for 40 clients. This behaviour is precisely what
we earlier encountered in Subsection VII-A. Hence, the quality
of weights transferred remains superior as well, establishing
the correctness of the weights transferred. Nonetheless, the
model trained with the shared weights performed better than
the model trained from scratch, confirming the efficacy of the
learning model with cross-chain training.

Impact on Model Augmentation: Additionally, we run the
same transfer learning task but on a different model having the
first few layers (body) same as SimpCNN, but the head with
three additional 3×3 convolution layers of 256 filters, followed
by a max-pooling layer, a dense layer of 512 units and finally
the output layer. This experiment essentially establishes the
insights using the transferred weights as initialization to a
different model where only a few layers can be initialized.
We call this model TransferCNN.

On a similar note, we observe in Fig. 7 that TransferCNN
performs better when initialized with the weights learned
during a federated setup with 10 clients than when the ini-
tialization was done with the weights trained via federated
setup for 40 clients. However, in both cases, the accuracy
achieved is higher than when TransferCNN was trained from
scratch, without any transferred weight initialization. Thus,
the experiments mentioned above establish the validity of the
cross-chain transfer module and shows that the transfer of
weights produces influential initialization variables for transfer
learning.



(a) (b)

Fig. 7. Accuracy and Loss(Training and Testing) of TransferCNN on Cifar-
100 dataset trained from scratch as well as initializing the model with the
transferred weights.

C. Analysis of Transfer Overheads

To transfer the requested assets between blockchain net-
works, it incurs the following costs from the intermediate
steps – (a) cost for creating a learning asset from the model
parameters and include it to the Fabric in multiple fragments,
(ii) cost for retrieving an asset from the ledger on request
and defragmenting it, (iii) cost for the Byzantine agreement
protocol to collectively sign the asset, and (iv) verification of
the asset after the transfer is complete.

1) Entering Asset: Table III shows the overhead required
to embed the weights in the form of assets and to store them
into the ledger after fragmenting. The values that we record
are averaged across executions of 5 runs. We observe that the
asset size and the asset entry time scales up linearly with an
increase in the model dimension, as expected. However, it is
to be noted that the time taken to enter the asset into the
ledger by the FL server is around 1 minute, even for a 232
MB sized asset (for ResNet model), while, the global round
duration is atleast 3 minutes even for SimpCNN. Therefore,
PoFT prevents any contention, since an asset will be entered
before the asset for the next round arrives, and the clients can
avail the latest version of the global model well before an
updated version of the same is generated.

TABLE III
OVERHEAD FOR ASSET CREATION

Metrics CompVGG SimpCNN MobileNet ResNet
# params 171,682 814,122 3,239,114 11,192,019

Asset Size
(MB) 4.0 19.5 67.3 232.1

# chunks 5 24 84 290

Entry Time
(sec) 1.148 5.527 17.869 63.079

2) Transferring Asset: On an asset transfer request arrival
at a relay service, it must first retrieve the requested asset
from the ledger according to Steps 4–7 mentioned in Section
V and defragment it. It then acts as an initiator to order the
witness cosigners to sign the asset using BLS signatures and
finally replies with the signed asset. The relay service must
verify the signature on the received asset on the receiving end
before committing the transferred asset to its local ledger. In

Table IV, we illustrate the timing overhead incurred at each of
these steps. Retrieval Time includes the total amount of time
in seconds to retrieve the asset as well as defragment it.

TABLE IV
OVERHEAD FOR CROSS-CHAIN ASSET TRANSFER

Metrics CompVGG SimpCNN MobileNet ResNet
Asset Size

(MB) 4.0 19.5 67.3 232.1

Retrieval Time
(sec) 0.404 2.261 6.584 22.051

CoSi Time
(sec) 0.847 5.241 18.586 110.460

Verification Time
(sec) 0.871 6.017 19.844 154.705

As can be inferred from the table, the transfer time of the
assets steadily increases with increasing model complexity.
However, unlike the trend in Table III, the cost of transfer
overhead scales slightly faster than linear, as is evident from
the increase in signing and verification times for ResNet.
In the experiment above, we have transferred the asset via
the HTTP POST request-response mechanism. To alleviate
the increasing transfer requests while scaling up the model,
techniques involving segregating the data channel from the
control channel and spawning multiple processes to handle
requests from relay services of different blockchain networks
are promising fronts; however, these are not in the scope of
the current work.

VIII. CONCLUSION

This paper presented an end-to-end framework that can
learn a model and store it in a blockchain, which can then
be transferred to other blockchain networks on-demand, thus
increasing the scope and efficacy of the model training over
multiple networks with rich and diverse training datasets.
We constructed a robust federated learning system that can
leverage various enterprises as FL clients and train the model
on them. Additionally, the federated learning system stores an
asset constructed from the model parameters after each global
round in the blockchain network, which is transferable with
the support of independent asset verification. Our extensive ex-
perimentation deciphers the efficacy of the transferred weights
on the receiving end as well as the overhead costs incurred.

A critical aspect of our framework is that it can leverage
the global models trained over a different network and use
the learned weights to initialize another model having a
partially similar structure, an approach well known to the
DL community based on transfer learning. As we observed
during the evaluation, a model initialization approach like
this significantly boosts up the efficacy of the final model.
Although transfer learning is instrumental in generating rich
and compelling models [46], it is seldom adopted in practice as
transferring models across networks involve the possibility of
various attacks like model poisoning. In this context, PoFT can
enable the development of rich DL models trained over diverse
datasets across different networks, albeit without explicitly
exposing the datasets to the public space and eliminating the
possibility of model poisoning.
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