
ESRO: Experience Assisted Service Reliability
against Outages

Sarthak Chakraborty†∗, Shubham Agarwal‡, Shaddy Garg§,
Abhimanyu Sethia¶∗, Udit Narayan Pandey¶∗, Videh Aggarwal¶∗, Shiv Saini‡

†University of Illinois Urbana-Champaign, USA, ‡Adobe Research, India,
§Adobe, India, ¶Indian Institute of Technology Kanpur, India

sc134@illinois.edu, shagarw@adobe.com, shadgarg@adobe.com, abhimanyusethia12@gmail.com,

udit.pusp@gmail.com, videh1aggarwal@gmail.com, shsaini@adobe.com

Abstract—Modern cloud services are prone to failures due to
their complex architecture, making diagnosis a critical process.
Site Reliability Engineers (SREs) spend hours leveraging multiple
sources of data, including the alerts, error logs, and domain ex-
pertise through past experiences to locate the root cause(s). These
experiences are documented as natural language text in outage
reports for previous outages. However, utilizing the raw yet rich
semi-structured information in the reports systematically is time-
consuming. Structured information, on the other hand, such as
alerts that are often used during fault diagnosis, is voluminous
and requires expert knowledge to discern. Several strategies have
been proposed to use each source of data separately for root cause
analysis. In this work, we build a diagnostic service called ESRO
that recommends root causes and remediation for failures by
utilizing structured as well as semi-structured sources of data
systematically. ESRO constructs a causal graph using alerts and
a knowledge graph using outage reports, and merges them in a
novel way to form a unified graph during training. A retrieval-
based mechanism is then used to search the unified graph and
rank the likely root causes and remediation techniques based on
the alerts fired during an outage at inference time. Not only the
individual alerts, but their respective importance in predicting an
outage group is taken into account during recommendation. We
evaluated our model on several cloud service outages of a large
SaaS enterprise over the course of ∼2 years, and obtained an
average improvement of 27% in rouge scores after comparing the
likely root causes against the ground truth over state-of-the-art
baselines. We further establish the effectiveness of ESRO through
qualitative analysis on multiple real outage examples.

Index Terms—System Monitoring, Cloud Services, Causal
Graph, Knowledge Graph

I. INTRODUCTION

In recent years, software development and system design

in organizations are moving away from traditional massive

monoliths and towards a microservices-based design, resulting

in faster rate of development and release [1], [2]. These

microservices are often deployed on the cloud and offered as

Software-as-a-Service (SaaS) products to customers. However,

this has raised concerns about maintaining the availability

of these services since any production outage can negatively

affect customers, resulting in significant financial losses for

the enterprises [3], [4]. For example, 37 minute of downtime

∗Work done while at Adobe Research, Bangalore

on YouTube was estimated to cost Google US$1.7 million

in ad revenue alone [5], while one hour of downtime could

cost Amazon US$100 million on major shopping days [6].

Despite ongoing reliability efforts over the years, cloud ser-

vices continue to face unavoidable severe incidents [7]–[10]

and outages [11]. As a result, there has been a surge of research

in the field of AI Ops (AI for IT operations) [12].

In the traditional outage management workflow, Site Re-

liability Engineers (SREs) and On-Call Engineers (OCEs)

manually investigate issues, leading to long investigation times

and high resource wastage. This, in turn, increases both the

mean time to detection (MTTD) and the mean time to reme-

diation (MTTR), which are essential in maintaining service

level agreements (SLAs) [13]. The current outage management

process consists of five steps: (1) detecting outages through

alerts, microservice traces, or performance metrics; (2) triaging

the incident by communicating back and forth to assign

the correct team for handling the issue; (3) identifying the

root cause of the outage using multiple sources of data; (4)

resolving the incident and finding a fix for the root cause; and

(5) documenting the entire workflow as a natural language

analysis report. This process is often inefficient and error-

prone, requiring significant time and resources.

Diagnosing outages requires a significant amount of do-

main expertise, often gained from investigating past outages.

However, manually searching through a large database of

past outages is not feasible during the outage management

process. As a result, additional resources are often required

to communicate about any similar outages that have occurred

in the past. Since most symptoms are not entirely unique, the

expertise of SREs and the team responsible for a particular

service is valuable throughout the entire process. Nevertheless,

recent research studies, such as those presented in [14]–[17],

have explored data-driven techniques for predicting outages,

performing root cause analysis, and triaging outages. These

techniques can reduce the MTTD and MTTR while improving

the overall On-Call Engineer (OCE) experience.

Several research studies, such as We use ‘ancestral alert’

instead of ‘root cause alert’ [15] [15], [18], use alerts to detect

255

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00131

and forecast outages, as well as suggest root cause alerts1.

However, relying solely on alerts for root cause analysis can be

inaccurate due to their volume and the presence of redundant

and low severity alerts. Additionally, some alerts may not have

triggered on the root cause service, but only on the affected

services due to a snowball effect. Though some works use

performance metrics collected through system monitoring to

predict the root cause service, we argue that a larger set of data

points will be needed since metrics capture normal and less

critical system behaviour as well. Alerts are typically intended

to identify problems that can have a significant impact on

the system or its users, which makes it more suitable to be

used to diagnose system failures. Some studies have also used

past outage reports to predict likely root causes [19], [20] by

comparing symptom similarities. These works try to compute

the similarity between the symptoms of the current outage and

those described in previous outage reports. However, such a

methodology will just map a recent incident to a past one,

without considering any details regarding the pattern of the

incident observed through alerts.

We conjecture that utilizing both the alerts and the outage

reports information in a systematic way leads to a more

informed outage diagnosis process by assisting the OCEs.

Though alerts are voluminous, they are structured and capture

the real-time information about the degradation in the services,

as the detailed symptoms may not be available until some

time has elapsed since the fault occurred. Outage reports, on

the other hand, contain rich information about past incidents

from multiple services, but are written in semi-structured

natural language text. Hence, combining this information with

structured data can help engineers navigate and diagnose

outages more effectively.

In this paper, we build an Experience assisted Service

Reliability system against Outages (ESRO) that retrieves sim-

ilar outages based on a comparison of current alerts fired

during an ongoing outage with symptoms of previous outages.

It then recommends potential root causes and remediation

techniques based on the retrieved outages. The novelty of our

approach lies in integrating the structured information that is

readily available in real-time during an incident along with

the semi-structured historical outage reports to improve the

experience of root cause analysis and performance diagnosis

for the reliability engineers. The advantage that ESRO brings is

the combination of outage-specific real-time information from

the structured alerts data along with data-driven experience

obtained from the past outages. We build a causal graph to rep-

resent the dependence relationships among the corresponding

alerts, and a knowledge graph to represent the outage reports.

The contribution of both sources of data is brought about by

integrating the graphs in a way such that the alerts responsible

for an outage are linked to the corresponding node represented

in the knowledge graph. The linkage between the two graphs

is accomplished through a temporal overlap of the outages

1We term alerts identified as ‘root cause alerts’ in prior literature as
‘ancestral alerts’ to avoid confusion with the outage reports terms.

with the alerts. To improve the prediction accuracy during

inference, our approach also builds a predictor for an outage

group (set of similar outages) using alerts, which ensures

that only the alerts indicative of an outage are given more

weightage in prediction. We have evaluated ESRO through real

production outage data obtained from a large SaaS company,

collected over a course of 2 years. We have observed at least

16% improvement in accuracy in recommending potential root

causes over state-of-the-art baselines. We further demonstrate

the efficacy of our approach through real outage examples in

the production scenario.

The key contributions are summarized as follows:

• We develop a system that contributes to the development

of a more effective performance diagnosis methodology

by leveraging structured and real-time alerts data along

with outage reports which contain semi-structured natural

language text.

• We build a causal graph to represent the alerts and a

knowledge graph to represent the information present in

the outage reports succinctly. We then merge the two

graphs in a novel way to form a linkage between the

alerts in the causal graph to the outage symptoms in the

knowledge graph.

• Inference during an ongoing outage makes use of only

the available alerts to rank past outages with similar set

of alerts and symptoms.

• Experiments on real outage dataset shows the advantages

of ESRO over the baselines. We observed 16% improve-

ment in predicting root causes and 38% improvement in

predicting mitigation steps. We also present qualitative

review on few real outages.

II. RELATED WORK

Root Cause Analysis has been studied in literature in the

context of microservices and cloud services [16], [18], [19],

[21]–[25]. Several works [16], [21], [23], [26], [27] have uti-

lized time series KPI metrics data obtained from Prometheus to

predict the root cause metric and service. These works usually

build a causal graph among the performance metrics using

some causal discovery algorithm [28], which are traversed

during inference time to locate root cause metrics. Qiu et al.
[29] on the other hand uses domain knowledge in the form of

a knowledge graph to improve the causal graph learnt by the

causal discovery algorithms and follows similar graph traversal

algorithms to locate the root causes.

Works like AirAlert [14], eWarn [18] and Fog of War [15]

use alerts from multiple services for performance diagnosis.

These works either extract suitable features from alerts or build

a dependency graph structure for performance diagnosis of

cloud services, and report the root cause alerts. However, in

some cases, the root cause service may not trigger any alerts,

making it difficult to correctly identify the faulty service solely

through alert-based methods. Moreover, there is a possibility

that the root cause service alert was triggered outside the

designated time window used for creating alert-based features.

In such cases, outage reports containing historical information

256

provides more information about the root cause service, and

the remediation technique that needs to be followed by com-

paring with similar past outages.

Works like [17], [19], [20], [30] mines information from the

natural language text present in the outage reports for various

performance diagnosis tasks. Saha et al. [19] builds a knowl-

edge graph with the past semi-structured incident reports by

extracting the symptom and root cause information from them

using topic models [31] and language models [32]. It then runs

inference on the graph to yield the most probable root cause.

Ahmed et al. [20] used Large Language Models (LLMs) to

understand the abilities of the outage report in predicting root

causes and mitigation steps. Extensive experimentation with

various language models suggests that outage reports are very

useful in outage diagnosis. Another line of research uses the

outage diagnosis data to learn correlations among them using

deep-learning techniques to perform outage triaging [17], [30],

[33]. Liu et al. [34] has attempted to correlate alerts with

support tickets, but their design objectives differ from ours.

However, none of the above methods use any structured

data available during a fault along with outage reports to

recommend root cause and mitigation steps. Semi-structured

information, such as outage analysis reports, is generated only

after the fault has been mitigated or after a certain period

of time following the occurrence of the outage. Thus, semi-

structured data is unavailable during inference and hence we

need to use structured alerts data which flows in real-time.

The prior works do not address this issue.

III. DATA DESCRIPTION

We give a brief overview on the different sources of data

available to us for modelling ESRO. It uses structured data

in the form of alerts obtained in real-time, along with the

historical outage reports documented by the SREs after the

mitigation of the outage.

1) Alerts Data: Alerts are fired by an alerting mechanism

when the monitored metric values for a service compo-

nent within a system exceed predetermined thresholds.

These alerts can be of varying severity, and contain

information such as the alert description, the condition

that triggered the alert, severity level, the service affected,

and the timestamp at which the alert was generated. For

instance, a microservice may trigger an alert if the buffer

queue size surpasses a certain value. The alerts data

provide critical insights into the system’s performance

and any potential issues that may arise. They are available

in real-time and forms the structured data.

2) Outage Reports Data: Outage reports are created by

the SREs after an outage has been resolved, through

a comprehensive analysis and summary of the possible

causes. These documents capture the discussions dur-

ing the outage and provide detailed insights into the

resolution process. These reports provide a detailed de-

scription of the symptoms and its impact, as well as

the root cause and remediation techniques employed.

Additionally, the reports contain timestamps for when the

(a) Structured Alert Data

(b) Semi-structured Past Outage Reports

Fig. 1: Types of data available during an outage

outage was recorded and when it was resolved. Outage

reports provide a duration during which the error in the

system escalated, and hence the alerts generated during

this period can be utilized to identify potential root

causes. Moreover, by correlating outages with similar

symptoms but for different system components, outage

reports can suggest remediation techniques to mitigate

similar occurrences in the future.

IV. SOLUTION OVERVIEW

Our approach involves building a system called ESRO that

is capable of predicting potential and likely root causes and

remediation steps during an outage. A schematic overview of

ESRO is shown in Figure 2. Our proposed solution combines

structured alerts data and semi-structured outage reports to

accurately group similar outages that had occurred in the past

and predict the likely root causes and remediation strategies

from the set of similar past outages. The structured alerts

data provides recent information on the system performance,

while the semi-structured outage reports data offers detailed

and comprehensive information on past outages.

In order to capture the relevant information from structured

alerts and outage reports data, we construct a causal graph

(CG) and a knowledge graph (KG), respectively. The CG

represents alerts as nodes and edges as causal relationships

between alerts, while the KG summarizes the rich information

present in the outage reports data. The training phase of ESRO
merges the two graphs, creating a comprehensive understand-

ing of system behaviour during an outage, which facilitates

accurate prediction of root causes and remediation steps. This

merging of the causal graph and the knowledge graph along

with their use during inference time is a key novelty of ESRO,

enhancing the effectiveness of our proposed solution.

Our approach involves: (i) construction of the individual

and merged graphs, and (ii) leveraging the graph for inference

257

Fig. 2: ESRO Pipeline consisting of two phases: (i) Graph Construction Phase - Previous alerts and outage reports are
utilized to construct the merged CK Graph and train n outage cluster predictor, (ii) Inference Phase - Likely root causes and
remediation steps are predicted from the real-time alerts for an outage

at the time of an outage. Each of these steps can be further

divided into sub-steps, which are described in detail. Experi-

ments on real-world data demonstrate the effectiveness of our

approach, which has the potential to significantly improve the

reliability of complex distributed systems by enabling faster

and more accurate resolution of outages.

V. GRAPH CONSTRUCTION PHASE

In this section, we present the methodology for representing

the information present in the alerts and the outage reports via

graphs to facilitate root cause and remediation steps prediction.

This involves multiple sub-tasks, including information extrac-

tion from incident reports and alerts, constructing individual

graphs and finally merging the two graphs. Next, we delve

into a detailed description of each sub-step.

A. Information Extraction

1) Alerts: The set of alerts generated is grouped into the

nearest time window of duration t based on the timestamp

at which they were fired. For our experiments, we have

set t to 15 minutes. This grouping results in a list of

alerts fired for each time window. We then construct an

indicator dataset, where each row represents the indicator

function for each alert at a specific time window of t
minutes. The number of columns in the dataset equals the

number of unique alerts fired, while the rows represent t
time duration windows. The structured dataset is consid-

erable in size and potentially noisy, with certain columns

exhibiting low variability and limited significance. Hence,

we filter the number of time windows and the number of

unique alerts to remove noise. Specifically, we remove the

unique alert columns where alerts fired less than 10 times

in the entire time period of over 1.5 years for which the

data is collected, subject to the condition that no such

alert fired during an outage. This ensures that only the

relevant and frequent alerts are considered. We apply an

additional filtering criterion to remove 95% of time period

rows where no alerts fired when there was an outage.

This corresponds to the situations where the data does

not show the relevant alerts.

2) Outage Reports: The outage reports available are parsed

to create a JSON, where symptoms, root cause, and

remediation steps are the corresponding topics with their

descriptions. Instead of utilizing the report’s lengthy

description of these attributes which contains various

technical jargons, we aim to extract a summary that

is more concise, comprehensive and free from domain-

specific terminologies. To accomplish this, we use a pre-

trained Bart-large summarization model [35] to extract

a shorter summary for each outage’s respective symp-

tom, root cause, and remediation sections. We employ

the abstractive summarization technique instead of the

extractive summarization method for two reasons: (i)

the original report contains reliability-specific jargon that

makes it difficult for an extractive summary of an outage

report to capture the details succinctly, and (ii) it can

interpret information from multiple sources making it

highly versatile in handling diverse and complex content

(iii) it can condense lengthy and convoluted text which

was more effective for our specific use case

B. Causal Graph (CG) Construction

The indicator dataset of alerts occurrence data as obtained

from Section §V-A forms the input to a standard PC algo-

rithm [28] to obtain the causal graph between the alerts. Here,

the alerts are the nodes in the graph and an edge a → b
between two alerts a and b indicates that alert b was caused

due to alert a.

PC algorithm is a constraint-based causal discovery algo-

rithm that identifies the dependence relationships between

pairs of alerts in the alerts occurrence data. It starts with

a completely connected graph between the alerts, and iter-

atively computes the skeleton graph by removing relevant

edges inferred through hypothesis testing using conditional

independence (CI) tests. Here, we have used χ2 test since

the data is discrete, that is, either the alert was triggered at

a specified time or not. Specifically, PC algorithm runs CI

tests of the form p(y ⊥⊥ x|S), where x and y are two alerts

under consideration while S is a set of alerts conditioned upon

(also called separating set). The algorithm starts with an empty

258

separating set (S = φ) and increases the cardinality of S.

Once the probability p is greater than a confidence threshold

α, the PC algorithm removes the edge between x and y. After

constructing the skeleton graph, it then orients the direction

of the edges using a set of rules [36]. Hence, the result of

employing the PC algorithm is a Completed Partially Directed

Acyclic Graph (CPDAG), where the nodes correspond to

distinct alerts. Within this graph, certain edges possess directed

orientations, while others remain bidirectional. Bidirectional

edges signify instances where the PC algorithm couldn’t

ascertain the causality direction between two nodes based on

the available dataset.

Since the causal graph represents the causal dependence

relationships among the alerts, an ancestral alert can be

identified by traversing the graph. An ancestral alert is the

one which was recorded first due to a fault in the root cause

service, and it has in turn resulted in firing of other alerts

in the impacted services. It should be noted that the service

responsible for firing the ancestral alert might not be the root

cause service. The causal graph thus can be used in real-time

by traversing the alert nodes that were triggered during a fault.

C. Knowledge Graph (KG) Construction

The outage reports provide us with rich historical informa-

tion of what were the symptoms, what were the root causes

and how the symptoms were resolved. The entire information

of the incident report can be represented through a knowledge

graph with appropriate relations between the nodes. Hence, we

construct a knowledge graph where the symptom, root cause

and the remediation steps for each outage are represented as

individual nodes. Furthermore, we add has-root-cause
and has-remediation edge between each symptom and

its corresponding root-cause node and remediation node ex-

tracted from the same outage report respectively.

However, such a graph would have separate connected

components for each outage, implying similar outages will

not be grouped together. As a result, the knowledge graph

construction step also groups similar outages into a cluster.

Based on the sentence embeddings of the corresponding

abstractive summary of the symptom nodes, root cause nodes,

and remediation nodes, we cluster them individually. We first

tokenize each node description (symptom, root cause and

remediation summary), and then use pre-trained contextualized

BERT embeddings [37] (transformer based masked-language

model) for each token/word in the summary to get the word

embeddings. The advantage of using pre-trained BERT embed-

dings is that the embedding of each word is generated based

on the context in which it has been used. We finally compute

the node embedding by averaging the word embeddings for all

the tokens/words present in the summarized node description.

We refrain from using Sentence-BERT [38] since it requires

structural and semantic flow in the sentence to obtain a high

quality embedding. Such a semantic flow might not be present

in the abstractive summary of the symptom, root cause or

remediation.

For each individual node type (symptom, root cause and

remediation), we performed separate Agglomerative Hierar-

chical Clustering [39] on the node sentence description em-

beddings derived above. We then compute the optimal number

of clusters K based on the Silhouette score, such that the

score with K cluster is within 5% of the maximum score

possible. This is done in order to reduce the overall number

of clusters. Finally, we combine the individual clusters formed

for symptoms, root causes and remediation in such a way that

two outages (X , Y) are grouped together in a cluster K if they

were in the same cluster due to either their symptom (Ksymp),

root-cause (Kroot−cause) or remediation (Krem).

(X ,Y) ∈ K ⇔ (X ,Y) ∈ {Ksymp∨Kroot−cause∨Krem} (1)

The intuition behind Equation 1 is that an outage can be

related to another if either their symptom are similar, or the

root cause behind the incidents are similar or even if the

remediation technique to mitigate the incident was similar.

The knowledge graph hence represents the rich semi-structured

information obtained from the outage reports.

D. Merged Graph Construction

The individual graphs (causal graph and knowledge graph)

constructed above forms the basic components of the merged

graph. Individually, they represent rich information but lacks

usability. The process of merging combines the benefit of both

the individual graphs and forms a comprehensive model to

locate similar outages and recommend potential root causes

and remediation techniques for an impending outage. We im-

plement a novel mechanism to merge these two graphs, where

we link the alerts in the causal graph to the symptoms in the

knowledge graph. The idea behind this is that when a triggered

alert in the system indicates some visible symptoms/anomaly

in the system, the edge between the alert and the symptom

reflects such a phenomenon. Since an outage report is not

indicative of the exact set of alerts nomenclature that caused

the outage, we use the timestamp of the outage and the alerts

fired to link the causal and the merged graphs.

For each outage, we extract its start time and resolution

time from the outage report. We then filter out all the alerts

that were triggered at least once during the interval of the

occurrence of outage or an hour2 before the start of the

outage. These alerts are indicative of the outage and hence, if

a combination of these alerts are triggered again, it is of high

probability that a similar outage has occurred. Thus, for each

alert in the list of filtered alerts, we add a caused-outage
edge between the alert and the corresponding outage symptom

node(s). Thus, we have the merged graph (Figure 3), which

we will henceforth term as CK graph, which combines the

structured as well as semi-structured data.

2We select a duration of one hour for the outages as empirically we observed
that most catastrophic issues happen within 1 hour after the root cause

259

Fig. 3: CK Graph after merging causal graph and knowledge
graph. Pink edges connect the alerts in causal graph to
symptom nodes in knowledge graph

E. Outage Cluster Predictor

We link the causal graph with the knowledge graph based on

the temporal overlap of the alerts fired during the occurrence

of an outage. However, some alerts may have been fired that

were not related to the outage that was occurring at the time.

As a result, forecasting a single prior outage that is likely

to occur when the alerts are triggered during inference time

results in significant noise. Thus, we forecast a group of past

outages by modeling only the most indicative alerts. However,

the outage reports we have are not inherently clustered based

on the set of alerts fired or the type of symptoms. Hence,

we use the clusters that were defined in the knowledge graph

(Section §V-C) as ground truth to train a predictor to predict

the cluster for an outage defined by a given set of alerts during

inference. An additional advantage of using such a predictor

is that it will inherently assign an outage prediction weight to

each of the alert. Hence, not only the temporal overlap of the

alerts with the outage is used, but also a weight is assigned

to each alert, which will help the model to further rank the

linked symptoms and their root causes.

Similar to Section §V-D, we find the set of alerts triggered

during the outage and an hour before the outage started, and

create a dataset. However, the corresponding ground truth

label that we want to predict is the outage cluster, which we

computed in Section §V-C. We then train a Random Forest

classifier model on this dataset that predicts the cluster in

which an outage belongs to, depending on the set of alerts

fired. The maximum depth of the model is 25 while the number

of estimators is 50. We utilize the inference of this model

during the inference stage, which we shall describe below.

VI. INFERENCE PHASE

The constructed CK graph represents the temporal depen-

dencies between the alerts and the past outages, with the

similar outages clustered based on their symptoms, root causes

and their remediation techniques. The CK graph is then used

by the inference pipeline to suggest possible root causes for a

new outage based on the alerts triggered at the time, which is

the only information available during inference. This realistic

setting sets the approach apart from prior works that rely

on symptom descriptions to infer potential root causes and

remediation steps, which are not available until some time

after the outage has started.

In this section, we describe multiple inferences method-

ologies, which have been compared in Section §VIII. The

various methodologies form our baselines while the Section

§VI-C describes our proposed inference method. Below, we

shall illustrate and/or exemplify the inference methodologies

only for recommending the root cause, while analogous steps

follow for the remediation techniques.

A. Path-based Inference (Path)

The causal graph component of the CK graph is traversed

using a path based inference technique to find the collection

of candidate ancestral alerts, with starting nodes being the

alerts triggered during an outage. It leverages the structural and

causal information in the alerts to predict likely root causes

and remediation steps. A traversal of the causal graph will

result in a collection of alert nodes that are directly linked

to the symptom nodes in the knowledge graph component

of the CK graph. We restrict our traversal to only those

symptom nodes that are reachable in k (or less) hops, where

k is a hyperparameter. The potential root causes are the

corresponding root causes for the symptoms which had been

reached though the traversal strategy. For each potential root

cause R, a path-based score is defined.

Scorepath(R) =
∑

i

1

d(pathi → symptom(R))
(2)

where, d(path) = length of the path from the starting alert

node to the root cause node. The inverse of d(path) is summed

over all the paths leading to the same root cause node. Figure

4 depicts demonstration of the same. A higher root-cause

score represents a higher confidence in the prediction. This

is based on two hypotheses: (i) the more the number of paths

from the triggered alerts to a certain root cause, the higher

is its likelihood of being the faulty service, and (ii) a shorter

path represents a more direct correlation between the alert and

the root-cause’s historical co-occurrence and hence, should be

given higher weight. This inference method utilizes only the

information present in the structured data, that is, the alerts

fired and their causal relationships to predict likely root causes.

B. Similarity-Based Inference (Sim)

The similarity based inference method utilizes language pro-

cessing techniques on the symptoms of the previous outages to

predict likely root causes and remediation steps. It implicitly

uses the information present in the semi-structured data, that

is, the graph generated from the outage reports.

We extract the title description of each triggered alert

and use BERT to identify contextual embeddings for each

260

Fig. 4: The figure shows a demonstration of the path based
inference approach, where Alert 1 is fired during an outage.
The inference method reaches two root causes Root Cause 1
(RC1) and Root Cause 2 (RC2) from Alert 1. There is only
one 2-length path to RC2 from Alert 1, while there are two
paths to RC1, a 2-length path and a 4-length path. Hence, the
score for RC1 is 0.75 while the score for RC2 is 0.5.

word/token. The embeddings for all the words are averaged

to compute the alert embedding. Finally, the average of the

alert embeddings for all alerts triggered during the outage is

used as an input query to the inference pipeline. We perform

similar computations to obtain the symptom embeddings for

each outage in the CK graph. Finally, we compare the cosine

similarity of the input query embedding to each symptom

embedding, and assign a score to each root causes with the

similarity score for its corresponding symptoms.

ScoreSim(R) = cosine(embalerts, embsymptom(R)) (3)

Here R → symptom indicates the corresponding symptom

of a root cause R in the CK graph. With a higher score, a

more similar symptom (from among the past outages) will be

identified and hence, have a more similar root cause.

C. Cluster based Inference (Clust)

Our primary hypothesis is that combining the structured and

current source of data (alert time series i.e. causal graph)

with semi-structured and historical source of data (outage

reports i.e. knowledge graph) for inference will result in better

predictions than using each separately. In Clust, ESRO utilizes

the entire CK graph to predict the potential root causes and

remediation techniques.

Similar to the path-based inference method, Clust traverses

the causal links between the alerts to identify the set of an-

cestral alerts that link to the symptom nodes in the knowledge

graph. It identifies all the set of symptom nodes that may be

reached in k or lower hops from the triggered alert nodes.

However, unlike Path, it reports a ranked list of the clusters

to which the outages corresponding to the symptom nodes

belong. The weight given to each cluster is the inverse of

the number of times the cluster was reached using the graph

traversal from the triggered alerts.

In the above set of clusters, we looked at the historical

temporal overlap between the alerts fired and the outages to

narrow down a set of potential outages to which the current

outage is similar. However, to account for the importance of

alerts fired in predicting the outages, we employ the outage

cluster predictor described in Section §V-E. We create a test

set with indicator variables for all potential alerts using the

alerts that were triggered during inference time and run the

outage cluster prediction model to predict the probability of

the alerts being connected with the clusters.

We combine the two ranked list of clusters by adding up

the individual weights. Finally, from the top-L combined rank

of clusters, we find the most similar symptom using the NLP

based similarity technique as described in Section §VI-B, and

report the corresponding root causes and remediation steps.

Thus, Clust utilizes the entire CK graph in predicting the

potential root causes and their remediation steps. Algorithm

1 describes the inference method.

Algorithm 1: Clust Inference Method

Input: CK Graph G, outage cluster predictor M, Set

of all alerts U , Set of fired alerts A, k, L
Output: Potential Root causes and Remediations

1 Cluster Rank1 ← {}
2 Cluster Rank2 ← {}
3 C ← set of all outage clusters in G
4 for each alert a ∈ A do
5 Traverse G until k hops to locate symptom nodes S
6 Cluster Rank1[get cluster(S)] += 1

7 Normalize Cluster Rank1

8 X ← 1U (a) ∀a ∈ A
9 Cluster Rank2 ← M(X)

10 Cluster Rank[i] ←
Cluster Rank1[i] + Cluster Rank2[i] ∀i ∈ C

11 CL ← top-L clusters in Cluster Rank

12 E ← create embedding(A)
13 Ranked Symptoms S ′ ← Sim(E , embs) ∀s ∈ CL
14 RC ← root causes for S ′

15 Rem ← remediation steps for S ′

16 return RC, Rem

VII. EXPERIMENTAL SETUP

In this section, we outline the experimental process and the

setup we followed. We have implemented ESRO3 in python
and used causal-learn4 [40], an open source library to construct

the causal graph between the alerts. The natural language

models used to compute the summary of the outage reports

and create sentence embeddings were obtained from the open

source implementation provided by Hugging Face [41]. We

have run ESRO on a system having Intel Xeon 8124M 3.0GHz

CPU with 72 cores.

3Data is proprietary and cannot be shared. Code is available at
https://github.com/sarthak-chakraborty/ESRO.

4https://github.com/py-why/causal-learn

261

A. Data

The research was performed on a dataset obtained from

a large SaaS company that operates on a large-scale cloud

infrastructure with thousands of servers and multiple data

centres globally. ESRO focused on a production service that

comprised of over 40 microservices deployed via Kubernetes,

serving millions of users daily. The dataset contained alerts as

well as outage reports for a period from October 2020 to June

2022, a period of almost two years.

1) Alerts Data: The data set contained ∼ 44, 000 alerts

logged by 13 distinct monitors. During the entire time

period, ∼ 940 unique alerts were fired. However, after

filtering the alerts data according to Section §V-A, only

330 unique alerts remained for consideration, indicating

that many alerts occur only a few times with no predictive

power for an outage in the same service.

2) Outage Reports: The production level service outage

reports comprised a total of 182 reports, with each

report containing information on the symptoms of the

outage, its impact, the root cause, and the remediation

strategies involved in mitigating the consequences of the

outage. There is also information on the affected services,

the duration of the outage, and related incidents. Over

the period of two years, there were around 85 unique

symptoms and 95 unique root causes5.

B. Evaluation Methodology

We opt for ‘Leave-One-Out’ strategy to test our model,

which has been used in prior works [19]. While constructing

the CK graph, we neither consider the outage report for the

incident that need to be tested nor the alerts fired during

the incident’s duration. We retrieve top-k root causes and

remediation steps of historical incidents where the symptoms

were similar. It needs to be noted that we do not suggest a new

root cause or a remediation step, but retrieve most relevant root

causes and remediation steps for past incidents. We evaluate

how close the predicted root causes and remediation steps

are to the ground truth root cause and remediation steps

respectively. Results in Section §VIII shows the evaluation

metric’s maximum value over top-k (here, k=5) predictions

for all the different inference methodologies. Similar to the

evaluation of a retrieval based task, success is essentially

counted if there is a meaningful hit in its top-k predictions.

We present an averaged evaluation over randomly selected 50

outages.

C. Evaluation Metrics

We report Rouge (Recall Oriented Understudy for Gisting

Evaluation) [42] score to report the similarity between the

predicted root causes and remediation steps to the ground truth

root causes and remediation steps respectively. Both of these

are represented as text sentence. Rouge is used to compare

a candidate text to a set of reference texts. Specifically, we

5While the exact manifestation of symptoms and root causes varies, it’s
worth noting that several instances may point towards analogous issues.

choose Rouge-L and Rouge-1 scores [42]. Rouge-L takes

into account sentence-level structural similarity and identifies

longest co-occurring in sequence n-grams based on Longest

Common Subsequence (LCS) [43], while Rouge-1 measures

the number of matching ‘1-grams’ between the two texts.

Since the inference algorithm outputs a text prediction of the

root causes and the remediation steps (and not a topic) based

on a retrieval task, it might not match with the ground truth

root cause exactly and hence a hit@top-k metric might not be

a true metric. Hence, a rouge score will compute the closeness

of the predicted root causes and the remediation steps to the

ground truth.
We compare the similarity of the summarized text of the

predicted root causes and remediation steps against the sum-

marized text in the ground truth report, where the summary

was computed/extracted using the methodology described in

Section §V-A. The main reason for comparing the extracted

summary to the ground truth is the presence of production

level jargons in the entire text, which may affect the accuracy

of our model. The extracted summary will capture the crux of

the root cause, thus allowing a more relevant comparison.
To predict the performance quality of the Outage Cluster

Predictor model, we compute the top-K precision of its predic-

tions at multiple values of K, where, we consider a prediction

to be correct if the actual cluster is within the top-K predictions

of the model.

D. Baselines
To evaluate the efficacy of our model, we implemented two

baselines, which are the state-of-the-art approaches of utilizing

outage reports [19]. Since no public code was available, we

implemented them to the best of our understanding. The

baselines are described as follows:

1) Incident Search (IS): The symptom from the outage

report for the test outage is used to search over the

repository of all the remaining symptoms, by comparing

similarity of the pre-trained RoBERTa [32] embeddings

and top-5 similar symptoms are returned and evaluated.

For this, we have used FAISS6 [44] which is a library

developed by Facebook for efficient similarity search.

2) GCN: Symptoms, root causes and the remediation steps

in the incident reports are represented as individual nodes

with initial feature vectors being the average GloVe em-

beddings [45] of each word in their respective sentences.

Edges between the different nodes (intra-symptom, intra-

root cause, intra-remediation nodes and between symp-

toms and root causes) are adjusted as recommended by

Saha et al. [19]. We train a 2-layered Graph Convolution

Network (GCN) [46] model with 16 dimension hidden

layer followed by a Dense layer. We apply a contrastive

loss L using 10 randomly sampled false root causes and

the true root cause.

L = −log(
esim(xs,xr)

esim(xs,xr) +
∑10

j=1 e
sim(xs,xr,j−)

) (4)

6https://faiss.ai/

262

where xr = GCN representation of root cause, xs =
GCN representation of symptom, xr,j− = GCN repre-

sentation of false root cause.

During inference, we compute the cosine similarity of the

input symptom’s GCN representation with all the symp-

tom representations in the graph. Corresponding root

causes and remediation steps for symptom nodes having

maximum cosine similarity is considered as output.

Both of the aforementioned baseline methods utilize the

knowledge graph component to predict both root causes and

remediation steps. In the case of Incident Search, RoBERTa

embeddings are employed to represent symptoms, root causes,

and remediation strategies. Meanwhile, GCN employs a graph

convolution network to train embeddings for knowledge graph

nodes, enabling the retrieval of similar symptom nodes for a

given incident. These baselines are aligned with our study

as they try to retrieve the most relevant root causes and

remediation options. Given that outage reports exclusively

provide the information about the actual root cause and the

associated remedial actions for an outage, approaches that rely

only on the causal graph of alerts is unsuitable as a baseline.

In these approaches [14], [47], only the root cause alert can

be retrieved from the causal graph, but without information

about the actual root cause and the associated remedial actions

it is neither useful nor can it be evaluated with ground truth.

Therefore, we opt not to utilize baselines [14], [47] that rely

solely on alerts to predict root causes.

E. Design Choices and Hyperparameters

• The optimal number of clusters in Section §V-C are as

follows: (i) Ksymp = 63, (ii) Kroot−cause = 100, (iii),

Krem = 112, and (iv) K = 53.

• k = 9 in Section §VI-A, i.e., the path from the alert nodes

to symptom nodes of outages is of 9 or fewer hops, and

hence path to respective root cause node is 1 additional

hop

• L = 3, that is, we choose top-3 clusters based on the

combined ranking in the cluster-based inference method.

VIII. EVALUATION RESULTS

We evaluate our model with all the inference methods listed

in Section VI along with the baselines listed above. The

evaluation strategy will be presented in the following way:

A) Evaluating design choices in ESRO
B) Comparison of the chosen design for ESRO against the

baselines

C) Measuring the quality of the outage cluster predictor

D) Examples using actual production outages

A. Design Choices Evaluation

In this section, we shall evaluate two principle design

choices. One is computing the optimal number of clusters for

grouping the outages during graph construction phase, while

the second choice is for the most suitable inference method

(Section §VI) of ESRO.

1) Number of Clusters: An important step in the graph

construction pipeline for ESRO is the clustering of similar

outages (Section §V-C), which helps the inference method

in suggesting related outages for a given alert or a set of

alerts. We mentioned that the choice for the optimal number

of clusters for each of the node category (symptom nodes, root

cause nodes and remediation nodes) is based on the Silhouette

Score computed after agglomerative clustering. We plot the

variation of the silhouette scores against the number of clusters

for each node category in Figure 5(a), (b) and (c). Along with

it, the optimal number of clusters for each category (Ksymp,

Kroot−cause and Krem) is shown through a vertical line. The

optimal number of clusters are chosen such that it is within

5% of the maximum silhouette score obtained.

(a) (b)

(c) (d)

Fig. 5: Figure (a), (b) and (c) plots silhouette scores against
number of clusters while clustering symptom nodes, root
cause nodes and remediation nodes respectively. The vertical
line represents the optimal number of clusters based on our
condition (Section §V-C). Figure (d) is the t-SNE visualization
of the symptom embeddings for top-6 populated clusters.

With the optimal number of clusters fixed, we merge them

and establish a new set of clusters such that two outages are

in the same new cluster K if either their symptoms, root

causes or remediation steps were in their same respective

optimal clusters. As a result, we create 53 new set of optimal

clusters that groups all the outages. In Figure 5(d), we illustrate

the t-SNE visualization of the symptom embeddings for the

outages grouped into the top-6 largest clusters. These clusters

constitute ∼ 38% of all the outages. We observe from the

diagram that the clusters with higher number of outages

(cluster 10, cluster 6, etc.) form close groups, illustrating that

a new incident with a similar symptom can be associated to

other past incidents.

2) Inference Method: In this section, we draw forth a

comparison between the different inference methods described

in Section §VI that utilizes the different components of the

CK graph. We show how using the causal and the knowledge

263

graph together performs better than using them individually

while predicting the root cause and the remediation steps.

The comparisons are reported using average results over 50

randomly selected outages (described in Section §VII-B). The

comparison will provide us with a quantitative explanation for

the most suitable inference method.

Metric Path Sim Clust

Root Cause Rouge-1 0.202 0.211 0.242

Rouge-L 0.188 0.194 0.227

Remediation Rouge-1 0.158 0.177 0.219

Rouge-L 0.136 0.157 0.205

TABLE I: Comparing the performance of the various inference
methods through Rouge scores described in the paper

We observe from Table I that the clustering based inference

strategy (Clust), as described in Section §VI-C, outperforms

both path (Path) and similarity (Sim) based inference meth-

ods. Even though Path uses the causal graph to find the

ancestral alerts which are directly linked to the symptom

nodes, it requires knowledge graph components to predict the

root cause and the remediation step to be evaluated equally.

However, Sim uses only the knowledge graph to predict the

root causes and the remediation steps. Thus, the causal graph

cannot be evaluated individually, and hence we do not evaluate

any baselines that uses only alerts to predict the root cause.

The evaluation using both Rough-1 and Rouge-L scores

demonstrates that the Clust method consistently outperforms

the alternative techniques. Clustering based inference method

utilizes both the sources of data to recommend potential

root causes and remediation techniques. The broader scope

is enabled by the utilization of the history of the outages

including their diagnosis, the alerts that were triggered during

an outage, and the predictive insights of each individual alert in

relation to an outage scenario. We model the indicative power

of an alert through the outage cluster predictor model, which

we shall further elucidate in the next section.

B. Baseline Comparison

In this section, we compare the cluster based inference

method that we derived to be the best performing inference

method against state-of-the-art baselines (as selected in Sec-

tion §VII-D). In Table II, we draw forth this comparison and

report the results. Similar to Section §VIII-A2, we report the

average results over the same 50 random outages that were

chosen in Section §VIII-A2 for the baselines.

The table shows that the cluster-based inference method

outperforms the Incident Search and GCN baselines. Even

though these baseline methods utilized the symptom descrip-

tion as input, a level of detail typically available only after

post-mortem reports, they still do not achieve results superior

to those of the Clust approach.

Clust on average exhibits 16% higher performance in terms

of Rouge-1 scores over Incident Search for root cause rec-

ommendation, while around 38% higher for recommending

Metric IS GCN Clust % Gain

Root Cause Rouge-1 0.207 0.176 0.242 27.2%

Rouge-L 0.197 0.165 0.227 26.4%

Remediation Rouge-1 0.157 0.162 0.219 37.3%

Rouge-L 0.143 0.147 0.205 41.4%

TABLE II: Comparison of Cluster based inference to the
baselines. % Gain indicates the average improvement over
the two baselines.

remediations. Improvements in Rouge-L scores are similar

as well. Meanwhile, GCN’s performance is notably lower to

that of Incident Search in both root cause identification and

recommendation tasks. Overall, Clust performs ∼27% higher

than the baselines on average in root cause recommendation

and 39% in remediation steps recommendation.

Both the baselines use knowledge graph only to predict the

root causes and the remediation steps. Incident Search mainly

uses text similarity to find similar symptoms, similar to Sim.

In addition, we use the contextualized BERT embeddings to

represent the nodes of the knowledge graph, while incident

search uses RoBERTa and GCN computes its own embeddings

with GLoVe initialization. None of these embeddings provide

additional information. An interesting observation is that the

simple approach of comparing text similarities works better

compared to the more complex graph-based method (GCN).

This might be because our data covers a wide range of different

types of outages, resulting in individual connected components

for each outage report present in the data. This diversity makes

it hard for graph-based methods to extract layout specific

features and enrich the embedding computations.

C. Outage Cluster Predictor Performance

To compare the performance of the Outage Cluster Predic-

tor, we plot top-K precision of the model predictions against

varying K. We consider a prediction to be correct if the actual

cluster is within the top-K predictions. The dataset containing

all the 182 outages was split into a 70%-30% train-test set for

training the outage cluster predictor model. The total number

of clusters in the entire dataset is 53, while the train set had

only 43 unique clusters. Stratified split was not possible, since

few clusters represented only 1 outage (see Fig. 7).

Fig. 6: Test Set prediction performance of the outage cluster
predictor as reported by top-K precision against varying K.

264

Fig. 7: The figure shows the number of outages in each cluster

We observe in Figure 6 that the top-K precision for the

Outage Cluster Predictor model is 72.7% with K=5 and over

78% with k=6. Even with K=1, that is when we only use

the top-1 prediction, the accuracy is ∼62%, which shows a

significant performance where the total number of available

clusters are 53.

Figure 7 shows the number of outages that belong to each

cluster. We see that the distribution is highly skewed with 25%

of the outages belonging to only 3 clusters, and 50% of the

outages belongs to only 11 clusters. Given such a skewness

in the data, a top-1 accuracy of 62% and a top-5 accuracy

of 73% suggests that the outage cluster predictor model is

highly powerful and capable of predicting the correct cluster

given the alerts that were fired for an outage.

D. Illustration on Production Outages

A quantitative evaluation captures the sentence similarity

between the ground truth root causes/remediation and the

predicted root cause/remediation. However, in this section, we

present a formal evaluation of ESRO though manual validation

of a few illustrative examples which demonstrated high Rouge

scores in Section §VII-D7. We present three outages that were

flagged by the SREs and compare the root cause detected by

the domain experts with the predicted output.

1) Outage example 1: This incident occurred in the email

template microservice due to a deployment issue in a con-

nected service and lasted for about 4 hours. It was caused

by the service being deployed without proper configuration

validation, which resulted in a fault. Running ESRO on the

alerts fired during the time of the outage pointed to a similar

symptom that occurred a year ago on the same email template

service. It was ranked second on the list of possible prior

outages. The past incident was the result of a migration of the

internal deployment of the email service from one platform

to another, which resulted in a change in configuration. Thus,

even though there was no past outage with the same root cause

among the outage reports, ESRO was able to find a fault that

happened on the same email service due to a deployment issue.

2) Outage example 2: In this example, users of the SaaS

enterprise reported an outage due to the unavailability of

services that lasted approximately 1.5 hours. As per the re-

ports, the investigations pointed to a high load in the database

connectivity for the services, with the root cause identified

7Showcasing qualitative examples where a high Rouge score corresponds
to a strong alignment between predictions and actual outcomes

as an inefficiency in MySQL query plan which resulted in a

snowball effect. The impact was resolved by a rolling restart

of the application servers as well as the deactivation of certain

accounts that were the cause of the long-running database

query. Executing ESRO with the alerts fired during this outage,

it was able to pinpoint a similar outage 9 months before,

when consumers were unable to use the same service. The

root cause of the past outage was due to a resource contention

at a database tier, resulting in a database connection issue.

ESRO ranked the outage in top-3 among past outages. ESRO
was able to find a similar symptom at the same service that

was caused by a database issue.

3) Outage example 3: In another case, an outage was

reported because a certain service was unreachable due to a

deployment in the moonbeam pipeline resulting in a version

mismatch. After an hour, the impact was addressed with

a deployment rollback to match the versions. According to

ESRO, it detected a similar outage that occurred two years ago

when the same service was unreachable to a segment of users.

The root cause for the past incident was a version mismatch

between the service and the other components with which

it communicated. To discover the version mismatch issues,

a new alert was set up as a remediation strategy. Based on

the similarities of the alerts fired and the previous symptoms,

ESRO was able to identify this previous outage, ranking it in

top-1 among similar outages.

IX. CONCLUSION

In this work, we introduce ESRO, a novel service for

identifying root causes and recommending mitigation steps

during outages. By analysing semi-structured natural lan-

guage text from past outage reports, as well as real-time

alerts, ESRO leverages a merged graph that combines causal

and knowledge graph components. This enables the capture

of causal relationships among alerts and information about

symptoms, root causes, and remediation techniques from past

incidents. Grouping similar outages into clusters based on

shared characteristics further refines our approach. During the

inference phase, we utilize the graph to discern probable root

causes and potential remediation methods by drawing on in-

sights from past outage incidents. Our cluster-based inference

method employs only outage-specific alerts to uncover similar

incidents and provide root cause solutions. Through qualitative

analysis and quantitative evaluation on real outage examples,

using two years of cloud service outage data, we showcase

ESRO’s effectiveness. We achieve more than a 26% enhance-

ment in root cause prediction and over 37% improvement in

remediation step prediction compared to baseline methods.

Future Works: We plan to extend our approach by con-

ducting a broader comparative analysis by modifying state-of-

the-art techniques for comparable evaluation and incorporating

additional metrics for comprehensive assessment. We also

propose exploring hierarchical models to predict root cause

at multiple hierarchies. To make the system further intuitive

to be used, investigating the utilization of LLMs for question

answering within the merged CK graph holds promise.

265

REFERENCES

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,” Ieee
Software, vol. 33, no. 3, pp. 42–52, 2016.

[2] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2021.

[3] AWS, “Compare aws support plans.
https://aws.amazon.com/premiumsupport/plans/,” 2023.

[4] Azure, “Support scope and responsiveness.
https://azure.microsoft.com/en-us/support/plans/response/,” 2023.

[5] J. Rogers, “Google lost $1.7m in ad revenue during youtube out-
age, expert says. https://www.foxbusiness.com/technology/google-lost-
ad-revenue-during-youtube-outage-expert,” 2020.

[6] S. Wolfe, “Amazon’s one hour of downtime on prime day may
have cost it between $72 million and $99 million in lost sales.
https://www.businessinsider.in/tech/amazons-one-hour-of-downtime-on-
prime-day-may-have-cost-it-between-72-million-and-99-million-in-lost-
sales/articleshow/65058274.cms,” 2018.

[7] S. GHOSH, M. Shetty, C. Bansal, and S. Nath, “How to fight production
incidents? an empirical study on a large-scale cloud service,” in SoCC
2022. ACM, November 2022.

[8] Amazon, “Post-event summaries,” https://aws.amazon.com/cn/
premiumsupport/technology/pes/, 2023.

[9] Azure, “Azure status history — microsoft azure,” https://status.azure.
com/en-us/status/history/, 2023.

[10] Google, “Google cloud service health,” https://status.cloud.google.com/
summary, 2023.

[11] informationweek, “cloud outages,” https://www.informationweek.com/
cloud/cloud-outages-causes-consequences-prevention-recovery, 2023.

[12] Q. Cheng, D. Sahoo, A. Saha, W. Yang, C. Liu, G. Woo, M. Singh,
S. Saverese, and S. C. Hoi, “Ai for it operations (aiops) on cloud
platforms: Reviews, opportunities and challenges,” arXiv preprint
arXiv:2304.04661, 2023.

[13] Google, “Google sre book,” https://landing.google.com/sre/sre-book/
chapters/managing-incidents/, 2023.

[14] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang,
H. Dong, Y. Xu et al., “Outage prediction and diagnosis for cloud service
systems,” in The World Wide Web Conference, 2019, pp. 2659–2665.

[15] L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao, B. Qiao,
S. He, P. Lee, J. Sun et al., “Fighting the fog of war: Automated
incident detection for cloud systems,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021, pp. 131–146.

[16] A. Ikram, S. Chakraborty, S. Mitra, S. Saini, S. Bagchi, and
M. Kocaoglu, “Root cause analysis of failures in microservices through
causal discovery,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 31 158–31 170.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf

[17] M. Shetty, C. Bansal, S. Kumar, N. Rao, and N. Nagappan, “Softner:
Mining knowledge graphs from cloud incidents,” Empirical Software
Engineering, vol. 27, no. 4, pp. 1–34, 2022.

[18] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu, F. Zhou,
Z. Feng, X. Nie, W. Zhang, K. Sui, and D. Pei, Real-Time Incident
Prediction for Online Service Systems. New York, NY, USA:
Association for Computing Machinery, 2020, p. 315–326. [Online].
Available: https://doi.org/10.1145/3368089.3409672

[19] A. Saha and S. C. Hoi, “Mining root cause knowledge from cloud service
incident investigations for aiops,” in Proceedings of the 44th Interna-
tional Conference on Software Engineering: Software Engineering in
Practice, 2022, pp. 197–206.

[20] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and S. Ra-
jmohan, “Recommending root-cause and mitigation steps for cloud in-
cidents using large language models,” arXiv preprint arXiv:2301.03797,
2023.

[21] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 2018, pp. 492–502.

[22] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proceedings of The Web Conference 2020, 2020, pp. 246–258.

[23] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[24] S. Chakraborty, S. Garg, S. Agarwal, A. Chauhan, and S. K. Saini,
“Causil: Causal graph for instance level microservice data,” in Proceed-
ings of the ACM Web Conference 2023, 2023, pp. 2905–2915.

[25] M. Li, Z. Li, K. Yin, X. Nie, W. Zhang, K. Sui, and D. Pei, “Causal
inference-based root cause analysis for online service systems with
intervention recognition,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022, pp. 3230–
3240.

[26] P. Chen, Y. Qi, and D. Hou, “Causeinfer: automated end-to-end perfor-
mance diagnosis with hierarchical causality graph in cloud environment,”
IEEE transactions on services computing, vol. 12, no. 2, pp. 214–230,
2016.

[27] Z. He, P. Chen, Y. Luo, Q. Yan, H. Chen, G. Yu, and F. Li, “Graph
based incident extraction and diagnosis in large-scale online systems,”
in 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–13.

[28] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation,
prediction, and search. MIT press, 2000.

[29] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian, “A causality mining and
knowledge graph based method of root cause diagnosis for performance
anomaly in cloud applications,” Applied Sciences, vol. 10, no. 6, p. 2166,
2020.

[30] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang, F. Gao,
J. Sun, L. Yang, P. Lee et al., “Fast outage analysis of large-scale
production clouds with service correlation mining,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 885–896.

[31] F. Boudin, “Pke: an open source python-based keyphrase extraction
toolkit,” in Proceedings of COLING 2016, the 26th international con-
ference on computational linguistics: system demonstrations, 2016, pp.
69–73.

[32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach.”

[33] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and
D. Zhang, “Continuous incident triage for large-scale online service sys-
tems,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 364–375.

[34] J. Liu, S. He, Z. Chen, L. Li, Y. Kang, X. Zhang, P. He, H. Zhang,
Q. Lin, Z. Xu et al., “Incident-aware duplicate ticket aggregation for
cloud systems,” arXiv preprint arXiv:2302.09520, 2023.

[35] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 7871–7880.

[36] C. Meek, Complete orientation rules for patterns. Carnegie Mellon
[Department of Philosophy], 1995.

[37] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171–4186.

[38] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: https:
//arxiv.org/abs/1908.10084

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[40] “causal-learn. https://causal-learn.readthedocs.io/en/latest/index.html,”
2023.

[41] “Hugging face. https://huggingface.co/,” 2023.

[42] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[43] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” Journal of the ACM (JACM), vol. 24, no. 4, pp. 664–675,
1977.

266

[44] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–
547, 2019.

[45] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[46] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/
forum?id=SJU4ayYgl

[47] L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao, B. Qiao, S. He,
P. Lee, J. Sun, F. Gao, L. Yang, Q. Lin, S. Rajmohan, Z. Xu, and
D. Zhang, “Fighting the fog of war: Automated incident detection for
cloud systems,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, Jul. 2021, pp. 131–146. [Online].
Available: https://www.usenix.org/conference/atc21/presentation/li-liqun

267

