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Abstract

With increasing advancements in technologies for capturing 360◦ videos like omnidirec-

tional cameras and VR headsets, advancement in streaming of such videos has grown to

be a popular research topic. The high bandwidth and short response time requirement

of streaming 360◦ videos has escalated the need of developing optimised streaming algo-

rithms. Researchers have proposed various methods to tackle the problem, taking into

consideration network bandwidth and viewport prediction. However, most of the existing

work has been done without considering the video contents.

This report presents a method which uses the previous set of viewports along with the

video contents, involving the trajectories of prime objects, to predict the next viewport.

We claim that the head movement of a user majorly depends upon the trajectories of

the prime objects in the video. The viewport prediction model uses the set of previous

viewports and the object trajectories to obtain the predicted next set of viewports using

a fast and efficient online learning algorithm.

We have developed an an approach called PARIMA along with a pyramid-based

bitrate allocation as a learning model to predict next viewport. We have also designed

an end-to-end video streaming platform that provides comprehensive evaluation of our

model



Contents

Abstract iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Works 4

3 Background 6

3.1 360◦ Video Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Streaming of 360◦ Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Image Projections and their Inter-conversion . . . . . . . . . . . . . . . . . 8

3.4 Bitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 System Description 12

4.1 Video Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Equirectangular to Cube Map Conversion . . . . . . . . . . . . . . 13

4.1.2 Frame Stitching and Object Detection . . . . . . . . . . . . . . . . 14

4.1.3 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Viewport Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Passive-Aggressive Regression Model . . . . . . . . . . . . . . . . . 18

4.2.2 Time Series (ARIMA) Model . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 PARIMA: Augmented PA-ARIMA Model . . . . . . . . . . . . . . 23

4.3 Bitrate Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Video Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Video Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.2 Generating DASH Segments . . . . . . . . . . . . . . . . . . . . . . 28

4.4.3 Streaming 360◦ videos . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



CONTENTS

5 Evaluation Testbed 29

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 PanoSalNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Non-Adaptive Bitrate Allocation (NABA) Model . . . . . . . . . . 30

5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Prediction Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.2 QoE Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Evaluation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Evaluation Results 35

6.1 Prediction For One Frame: Regression Models . . . . . . . . . . . . . . . . 35

6.1.1 Viewport Data Collection . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.2 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Predicting Viewport for Multiple Frames . . . . . . . . . . . . . . . . . . . 39

6.2.1 Analysis of Optimal Chunk Size . . . . . . . . . . . . . . . . . . . . 39

6.2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Viewport Adaptivity: Comparison with NABA . . . . . . . . . . . . . . . . 44

6.4.1 Rate Adaptive Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusion and Future Work 46

7.1 Conclusions from the Experiment . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendices 48

A Dataset Statistics 49

B Android Application for Viewport Data Collection 50

v



Chapter 1

Introduction

360◦ videos have been capturing attention in industry [1, 2, 3] as well as academia [4, 5,

6, 7, 8] due to their immersing and fascinating experience.360◦ videos captures view in

every direction at the same time and are recorded using omnidirectional cameras. During

playback on normal flat display the viewer has control of the viewing direction like a

panorama. It can also be played on a displays or projectors arranged in a sphere or

some part of a sphere. Demand of 360◦ cameras has escalated with the rise of panoramic

photography, robotics and virtual reality.

Popular streaming platforms like Facebook[2], Youtube[1] and Vimeo[9] have also

introduced 360◦ streaming as a part of their website and application. These platforms

use tiling-based or cubemap-based methods for transferring the video frames but they

send the entire frame to the client side. This requires significant amount of bandwidth.

To tackle this issue, currently these platforms use extensive processing of the 360◦ videos

using optimised task-loading and specialised hardware. Despite the efforts, the processing

tasks are of long duration and are CPU and memory intensive. Bandwidth as well as

computation and memory requirements can be reduced if there can be some one-time

pre-processing of the video at the server side, followed by minimal processing at the client

side during streaming time.

With increasing popularity, 360◦ videos will attract even more user in the coming

days. However, one of the major disadvantages of streaming such videos is the need for

considerable bandwidth to provide high quality experience to users. Each frame of a 360◦

video covers an entire sphere, yet, only a small portion of the video(viewport) entertains

the user. Roughly 75% of the data transfer for streaming the entire video gets wasted. A

major factor that contributes to the problem is that most of the 360◦ streaming occurs over

mobile devices, which use WiFi to get the video contents, making it even more difficult

to efficiently acquire the video. Buffer for storing the video at client as well as server side
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1. INTRODUCTION

is much larger in case of 360◦ videos. Other computational and streaming overheads also

increases.

As a consequence, researchers in the field of 360◦ videos are exploring effective ways

to reduce bandwidth consumption yet provide enriching experience to the users. The main

focus of research is to predict the viewport beforehand and stream that part of the video

with higher quality while reducing the quality of the other parts of the video [6, 8, 10].

However, abrupt change in the quality of video is undesirable. Hence, QoE of the user is

also an important factor that is considered while streaming the videos. Researches have

discussed prediction of future bandwidth based on the network conditions to adjust the

quality of the streaming video accordingly. However, most of the existing documents in

literature does not consider the video content while predicting the viewport, rather they

only use previous viewport information, that is the head movement direction of the users.

Most of the online available 360◦ video datasets used in research papers use videos that

are mostly static i.e which have only one prime object and where the viewport doesn’t

change by a large amount. Some examples for this are videos in a roller-coaster, concert

etc. Generalization of such algorithms to videos containing multiple moving prime object

is not feasible.

In this project, we try to incorporate the use of video contents along with the previous

viewport information while predicting the next viewport of the user. Such a method will

generalize the concept of 360◦ streaming for videos having dynamic objects. An important

observation lies concealed in our argument of using video contents as well as user head

movements to predict the next viewport. We claim that the viewport of the user majorly

depends on the trajectories of prime objects in the video. Thus, we build a model that

captures head movements of users to find their viewports and uses object trajectories to

learn the FOI(field of interest) of the user in an online fashion.

1.1 Motivation

The project is motivated by the need of having efficient algorithms or methods to stream

360◦ videos. The following points motivate our project:

1. Sending entire frames over the network in case of 360◦ videos leads to high bandwidth

consumption. This is because each frame considers the entire 360◦ view and hence,

frame size is large.

2. Researches in case of viewport prediction have been based on specific 360◦ videos

which do not have multiple moving objects and these prediction methods don’t

2



1.2 Contribution

consider video content at all. This limits the model of viewport prediction to specific

types of videos.

3. Our claim is that viewport of the user depends majorly on the trajectories of the

prime objects in the video. The users can watch any object of the video randomly,

hence we need an online learning algorithm that can adjust to the user’s preferences

based on some video preprocessing to find those trajectories.

1.2 Contribution

The contribution of this project is that we developed a 360◦ video streaming platform that

can predict the user’s interests dynamically to transfer the video in an adaptive manner so

as to reduce the bandwidth consumption. The following are the features of the streaming

platform:

1. The video is temporally divided into chunks, and each chunk is further divided

spatially into tiles. From the user viewport data, our model PARIMA predicts the

viewport of the next chunk(s).

2. The tiles of the chunk are then allocated bitrate adaptively based on the prediction

made by the model.

3. During training of model, a one-time processing to detect objects and produce object

trajectories from each video is performed.

4. We then evaluate our model extensively against several baselines to support the

claim

This report in organised as follows:

In Chapter 2, we discuss the related work based on adaptive 360◦ video streaming. In

Chapter 3, we discuss the background of how 360◦ video streaming works and how it is

different from the general video streaming. Along with this, we discuss other concepts used

in the system design. In Chapter 4, we discuss the System Overview, with the detailed

design of the system, including video preprocessing, learning model, bitrate allocation and

video streaming details. In Chapter 5, we discuss the evaluation testbed, consisting of

the different datasets, baselines and metrics used for evaluation. In Chapter 6, we discuss

the evaluation results of the experiment and comparison with the baselines. Finally, in

Chapter 7, we discuss the conclusions and the future work in the field of 360◦ streaming.
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Chapter 2

Related Works

In traditional HTTP-based adaptive streaming, a video is partitioned into temporal seg-

ments and each segment is streamed with the desired quality optimizing the bandwidth

as well as QoE of the user. The streaming quality only depends on the network conges-

tion, bandwidth and the QoE. In viewport-adaptive streaming [11, 12, 13], each temporal

segment is further divided spatially into tiles. Viewport prediction algorithms require the

model to learn the movements of a user and decide which tiles cover the user’s future

viewport. DASH (Dynamic Adaptive Streaming over HTTP) [14] is a streaming standard

which adaptively streams video based on the link bandwidth between server and client.

For adaptive bitrate streaming and to enhance user’s quality of experience (QoE),

H Mao et.al.[15] has proposed a reinforcement learning-based technique that learns the

adaptive bitrate (ABR) algorithms. It learns a control policy for bitrate adaptation purely

through experience. Thus, it focuses mainly on network congestion and bandwidth to

optimize QoE without considering the viewport. Almquist [16] in his work has mentioned

an important trade-off for the amount of video to be stored in buffer. Due to possible

future bandwidth fluctuations, the client needs to store a considerable amount of video

for smooth experience. However, viewport prediction is done close to playback deadlines,

thus not allowing large amount of video to be kept in the buffer. This work has proposed

a data-driven characterization of the trade-offs associated with different categories of 360

videos, providing both qualitative and quantitative insights regarding how best to address

these trade-offs.

However, an important aspect in adaptive video streaming lies in the prediction of

viewports. Several studies have been made to predict viewport effectively. Fan et.al.[5]

in his studies developed a fixation prediction network (LSTM) that learns the sensor

related features along with image saliency map to predict viewer fixation in the future.

On similar grounds, saliency map based viewport prediction has been in the literature
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[7, 17]. PanoSalNet [7] learns the saliency map from user viewport data to enhance the

prediction accuracy and hence QoE.

Qian et.al.[18] introduces a system named as Flare that streams video by predicting

head movements of the user. By applying a variety of regression algorithms, they predict

the specific portions of a video frame which needs to be fetched. On similar lines, Xie et.al.

[19] in his work has approached the issue of adaptive streaming by clustering users and

then predicting the next viewport based on the history. Additionally, he presents a QoE-

driven rate allocation to minimize the expected streaming distortion under bandwidth

constraint. They assign bitrate to each tile by solving a constraint optimization problem.

Recent studies like DRL360 [20] uses deep reinforcement learning based framework to

optimize multiple QoE objectives across a broad set of dynamic features, while Mosaic

[6] makes the use of a CNN+LSTM network to find a tile probability map using saliency

map and user head movement logs as inputs.

A recent study, Pano[8] proposes a variable sized tiling scheme to strike a balance

between perceived quality and video encoding efficiency, alongwith robust PSNR based

quality adaptation algorithm. Variable sized tiling scheme has also been explored in [21].

However, most of the above mentioned works have used user head movements to

predict the next viewport. However, none of the previous works have explored the video

contents as well as the head movement of the user to stream the video. Saliency maps

has been used as a measure of video content [7, 6, 5], which however depends on the most

frequent viewed portions and hence user fixation points. It does not decouple the video

contents completely. In this report, we propose an algorithm that would decouple the

video contents from user fixation points and predict the user viewports while streaming

the video in an online manner.
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Chapter 3

Background

In this chapter, we would like to discuss the basics of 360◦ video streaming, how it works

and how it is different from the normal video streaming. Along with this, we would discuss

other concepts necessary for the system description.

3.1 360◦ Video Creation

Figure 3.1: Equirectangular Projection of a 360◦ Video Frame

360◦ video is typically recorded using either a special setup of multiple cameras, or

using a dedicated omnidirectional camera that contains multiple camera lenses embedded

into the device. Separate video footage are then stitched to form one spherical video piece

such that the color and contrast of each shot is consistent with the others. The stitching

algorithms might require careful calibration and time-consuming feature matching to en-

sure proper overlapping. The large size of frames due to wide view and the processing of

6



3.2 Streaming of 360◦ Video

video is the reason behind the large size of 360◦videos

The typical way to store a 360◦ video is by converting it to an equirectangular

projection. Equirectangular projection exhibits stretching of objects near the top and the

bottom while object shape is preserved near the middle of the frame. Figure 3.1 shows a

typical equirectangular projection of a 360◦ video. Other common projections are fisheye

projection and stereographic projection. We have used equirectangular projection for all

purposes in the project.

3.2 Streaming of 360◦ Video

Any video streaming platform is typically a client-server system. The server stores the

entire video and the client streams the video. At the back end of client side, it requests

the server for chunks of video frames and the server simply processes the requests and

returns the frames. The entire server-client communication may occur through Ethernet,

WiFi or cellular networks.

A general video is simply processed and streamed in the above manner. Adaptive

video streaming techniques for regular videos focus on optimising bandwidth consumption

based on the network. Videos are temporally partitioned into segments and each segment

is streamed with the desired quality. The quality of stream mainly depends on the network

congestion and bandwidth optimization.

A general video is simply processed and streamed in the above manner. Adaptive

video streaming techniques for normal videos focus on optimising the bandwidth con-

sumption based on the network.

On the other hand, a 360◦ video requires some additional features. For 360◦ videos,

each temporal segment is further divided into spatial tiles. The tile that the user looks at

forms the viewport. If each temporal segment is streamed at the same quality, a significant

amount of bandwidth is consumed, since any user looks only at some of the spatial tiles.

Thus, apart from the quality of each temporal segment, each spatial tile also needs to be

streamed at different quality.

360◦ videos are usually viewed using personal computers, mobile devices or head-

mounted displays. In 360◦ videos, the user can dynamically change his/her viewport for

immersing experience. Mobile devices use gyroscope to decide the viewport based on the

orientation of the device, while users can click and drag the videos in personal computers.

Thus, whenever new frames are sent by the server to the client, they are streamed to

the client based on these orientations. Also, since the 360◦ videos have a wider field of

view, the size of each frame is larger in general. Hence, streaming a 360◦ video typically

7



3. BACKGROUND

requires larger bandwidth and short response time.

The need for optimizations over 360◦ video streaming are emerging as a result of

the large number of novel applications that they have [22]. These include socialising with

friends in a virtual room, virtually walking the potential house buyers through the home,

remote medical training for surgeries, etc.

3.3 Image Projections and their Inter-conversion

Figure 3.2: Spherical Coordinates (ρ, θ, φ),

where ρ is the radial distance, θ is the polar dis-

tance, φ is the azimuthal angle. θ and φ shown

here in this figure is considered in positive direc-

tion

This section discusses different image pro-

jections for 360◦ videos and how one pro-

jection can be converted to the other. The

viewport of a user can be represented as

Cartesian coordinates in spherical space.

However, for image processing, we need to

represent the 360◦ video in a 2-D plane.

The reason for this is that due to the dis-

tortion in the shapes of the objects, 360◦

videos cannot be processed in a 3-D plane.

In a typical 360◦ frame, the objects near

the centre vertically are less distorted and

the objects near the ends are more dis-

torted.

The most popular way of representing

a 360◦ image in a 2-D plane is by using its

’Equirectangular Projection’. The projec-

tion maps meridians to vertical straight lines of constant spacing, and circles of latitude

to horizontal straight lines of constant spacing. Cartesian coordinates in a sphere can be

easily converted to equirectangular coordinates. Coordinates in equirectangular projec-

tion is simply the longitudes and latitudes of the sphere which is a trivial modification of

the polar and azimuthal angles of a point in a sphere.

The convention for the polar and the azimuthal angles that we follow throughout

the report is shown in Figure 3.2

Let (x, y, z) be the Cartesian coordinates of a point in sphere. We can get its repre-

8



3.3 Image Projections and their Inter-conversion

sentation in spherical coordinates system (ρ, θ, φ) using the following transformation:

ρ =
√
x2 + y2 + z2

θ = arctan
y

x

φ = arcsin
z

ρ

Thus, the longitude(Ln) and latitude(Lt) can easily be computed as:

Ln =
180◦θ

π

Lt =
180◦φ

π

The above transformation from (x, y, z) to (Ln, Lt) gives us a representation of a 3-D

image in 2-D plane. However, it is evident that objects in the equirectangular projection

will be distorted, especially near the poles. Hence, any object detection algorithm will not

be able to detect all the objects accurately. Thus, we further introduce a transformation

that maps an image in ’Equirectangular Projection’ to ’Cube map Projection’.

In computer graphics, Cube map projection is a method of environment mapping

that uses the six faces of a cube as the map shape. The environment is projected onto

the sides of a cube and stored as six square textures, or unfolded into six regions of

a single texture. Transformation from spherical space to cube map projection can be

easily understood using the spherical coordinates (ρ, θ, φ) instead of Cartesian coordinates

(x, y, z).

We have θ ∈ [−π, π] and φ ∈ [−π/2, π/2]. Thus the front face of the cube can only

capture the pixels of the image having θ ∈ [−π/4, π/4]. The central projection of a point

(ρ cosφ cos θ, ρ cosφ sin θ, ρ sinφ) on the sphere will be (t cosφ cos θ, t cosφ sin θ, t sinφ)

which hits the plane x = ρ when t = ρ
cosφ cos θ

.

Hence the projected point is (ρ, ρ tan θ, ρ tanφ sec θ).

If | tanφ sec θ| < 1, then the point will be projected on the front face of the cube.

Otherwise, it will be projected either on the top or the bottom face of the cube, which

would then require further computations of a different projection which would hit the

plane with z = ρ or z = −ρ.

However, it is easy to notice that whenever φ > π/4 or φ < −π/4, the point will

always be projected to the top or bottom face of the cube. Similar will be the arguments

for projecting a point on the other faces of the cube.

Thus, for any point (ρ cosφ cos θ, ρ cosφ sin θ, ρ sinφ), its projected point on any of

the face of the cube will be:

9



3. BACKGROUND

Face Coordinates Conditions

Front (ρ, ρ tan θ, ρ tanφ sec θ) ∀θ ∈ [−π/4, π/4], φ ∈ [−π/4, π/4]

Right (ρ cot θ, ρ, ρ tanφθ) ∀θ ∈ [π/4, 3π/4], φ ∈ [−π/4, π/4]

Back (-ρ,−ρ tan θ,−ρ tanφ sec θ) ∀θ ∈ [3π/4, π] ∪ [−π,−3π/4], φ ∈ [−π/4, π/4]

Left (-ρ cot θ,−ρ,−ρ tanφθ) ∀θ ∈ [−3π/4,−π/4], φ ∈ [−π/4, π/4]

Top (ρ cotφ cos θ, ρ cotφ sin θ, ρ) ∀φ > π/4

Bottom (-ρ cotφ cos θ,−ρ cotφ sin θ,−ρ) ∀φ < −π/4

Table 3.1: Equirectangular to Cube map projection

The above transformations are also invertible and can be used to convert back Cube

Map Projection to Equirectangular Projection and Equirectangular to Spherical Projec-

tion. These would be primarily used in the system for video preprocessing tasks.

We state a minor result of solid angle calculation in this paragraph which will be

used later. In our framework, if an object moves from point (x1, y1, z1) to (x2, y2, z2) on

the surface of a sphere, then assuming that the distance between the two points D is

small, we calculate the solid angle using the formula

Ω =
πD2

4ρ2
(3.1)

3.4 Bitrate

In simple terms, bitrate of a video being streamed is just the number of bits transferred

per second [23, 24]. It determines the quality and size of the video transferred. A higher

bitrate would mean a larger number of bits that can be transferred for a specific length

of video, thus impacting its quality in a positive way. The size of video transferred is

simply the product of bitrate and the video duration. Having a higher bitrate would

accommodate a higher quality image. However, the quality of the video is also limited by

the pixel resolution of the actual video, and after a certain point, it cannot be improved

further since the pixel resolution will be limited.

To give an illustration, refer to Figure 3.3. Suppose we are streaming three different

videos in three different cases, with the specifications mentioned in the figure. Suppose

the video is to be streamed at 8 Mbps.

For the first video having 30 frames per second, streaming will take place such that

8 Mb of data is assigned to 30 frames, that is, each frame gets a proportion of the 8

Mb of data. Among this proportion, each part of the frame gets a proportion of the

10



3.4 Bitrate

bitrate allotted to that frame, such that the entire 1 second chunk gets coded into 8 Mb.

Figure 3.3: Video Streaming Bitrate Demon-

stration

In contrary, the second video has a higher

number of frames per second with the same

frame dimensions. This would result in

getting a lesser amount of bitrate for each

frame within a second, which eould de-

crease its video quality in comparison to

Video 1. However, in the third video, the

number of frames per second is the 30 with

frame dimensions being larger than both

the videos. Therefore, in this case too, each

part of the frame will get a lower propor-

tion of the bitrate and hence exhibit poorer

quality.

For 360◦ videos, the frame size is typically large. Hence, for the same bitrate for

streaming, a normal video will be streamed in higher quality than a 360◦ video. In other

words, to maintain the same quality for streaming, a 360◦ video would require higher

bitrate than a normal video. Hence, the bandwidth consumption is higher for 360◦ videos.

360◦ videos are typically divided spatially into tiles. Through viewport adaptive

video streaming, we intend to provide higher bitrate to the tiles that contends to be the

viewport, so that the user viewport is at a higher quality than the non-viewed regions of

the frame.
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Chapter 4

System Description

Streaming 360◦ videos involves a collection of tasks that needs to be performed in order to

provide the best user experience. Our methodology involves the use of video contents in

order to accurately predict the following viewport. Video contents is specified primarily

by the objects present in the video and their trajectory. Thus, the task of finding the

contents involve a detailed analysis of the trajectories of each objects present in the video.

Current viewport of the user is detected by capturing the movement of the device playing

the video. Based on the set of viewports observed recently and the video contents, the

model predicts the next viewport. Based on the predictions, it finds the bitrate to be

allocated to each tile and then requests the corresponding tiles at the given bitrates from

the server. Before making the next set of predictions, the client will also update the model

to fit to recent user preferences.

4.1 Video Preprocessing

Since we claim that the user viewport primarily depends on the trajectory of prime objects

present in the video, it is important to extract details about the important contents of

the video which can be used to predict the viewport. The steps taken for the one-time

preprocessing of the video to extract the object trajectories is shown in Figure 4.1. Our

methodology for video preprocessing to extract meta-data from the video consists of the

following parts:

1. Conversion of equirectangular frames to cube map projection according to Section

3.3. This is to obtain a less distorted version of the frame contents.

2. Stitching cube map projections to get a continuous two-dimensional view of the 360◦

frame.

12



4.1 Video Preprocessing

3. Object detection in stitched cube map frames to obtain a list of objects for each

frame

4. Re-projection of the coordinates of bounding boxes of the detected objects back to

equirectangular form

5. Tracking object trajectories using centroid tracking in spherical projection space

Figure 4.1: Schematic diagram of the preprocessing steps used to extract object trajectories

from the video.

This section discusses the above steps in detail. The input to this module is a 360◦

video stored in equirectangular projection form and the final output will be a list of prime

objects and their trajectories, which are a representation of the video contents.

4.1.1 Equirectangular to Cube Map Conversion

As discussed in section 3.3, an equirectangular frame obtained from the spherical space for

a 360◦ video, is distorted. The distortion is less towards the centre and more towards the

poles. For example, in Figure 3.1, the bag present at the bottom is split across the width

of the frame because of the nature of the projection. Hence, in equirectangular projection,

detection of objects is an issue because of the non-uniform distortion as no model can

13



4. SYSTEM DESCRIPTION

be trained to detect randomly distorted objects. Hence, we convert the equirectangular

frames to cube map projection [25]. An example for cube map projection is shown in

Figure 4.2(a)-(f).

4.1.2 Frame Stitching and Object Detection

(a) Left (b) Front (c) Right

(d) Back (e) Top (f) Bottom (g) Stitched image

Figure 4.2: Figure shows the different faces of a cube map projection and their stitched image.

In the stitched image, each adjacent face of the cube is placed in such a way that they share a

common boundary. Top and Bottom face of the cube is rotated the appropriate amount so that

they form a continuous image

After the conversion of the Equirectangular projection to Cubemap projection of the

frames, we need to perform object detection. However, one noticeable disadvantage of

object detection on each of the cube faces for a frame is evident from the definition of

the projection. Since each pixel of the equirectangular image is allocated a unique face of

the cube, a single object might split and get mapped to different faces depending on its

location on the sphere. Hence, any object detection algorithm will either not be able to

detect the object or will detect as two objects for the adjacent faces. Cubemap projection

does not handle this event of an object being mapped to two adjacent faces of the cube.

To overcome this issue of single object mapped to multiple faces of the cube, we

stitch the different faces of the cube to form a single image (Figure 4.2). Stitching ensures

that any object mapped to adjacent faces of the cube gets treated as an entire entity.

This ensures that object detection and tracking is continuous and doesn’t create different

objects for the same entity. Apart from this, the object tracking algorithm will become

more robust and will ensure that even if an object is missed in few frames and is detected

back in the next frame, it will be able to map the same and interpolate the object position

for the frames where the object was missed to maintain continuity.
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4.1 Video Preprocessing

We have used YOLOv3 [26] algorithm on the stitched image of each frame to detect

the objects and get their bounding box coordinates. YOLOv3 is a pre-trained neural

network based object detection model that predicts an objectness score for each bounding

box using logistic regression. The objectness score is 1 if the bounding box prior overlaps

a ground truth object by more than any other bounding box prior.

After the bounding box coordinates for each object is obtained for a frame (stitched

image), it is then translated back to its equirectangular projection. This is because an

object might wrap around the edges of a frame, which will prohibit object tracking to

ensure correct results.

We implement the tracking algorithm in spherical space to take care of the wrapping-

around issue. Hence, with an inverse mapping of the equations in Table 3.1, we get the

desired output.

4.1.3 Object Tracking

Once we have detected objects in different frames and obtained their bounding boxes in

equirectangular projection, we then need to track object trajectories by assigning them

IDs such that objects in one frame can be mapped to objects in the next frame based

upon some algorithm. We claim the following points in regard to object tracking:

• There exists no deterministic algorithm that exactly predicts the trajectory of an

object in a video. This is because there are potentially infinite possibilities of differ-

ent objects in different frames that can occur in a 360◦ video. Hence, detecting the

exact trajectory of each object is not possible. An algorithm which approximately

maps the objects to some IDs will work because of the online nature of the learning

algorithm.

• Due to the fact that no projection in 360◦ frames produces a completely undistorted

image, object detection algorithms may not be able to exactly identify the objects.

It might also happen that the objects have distorted bounding boxes. Due to these

limitations of object detection algorithms, we should have a robust approximation

that can interpolate object positions even if the object goes missing in between for

a few frames and assign them the same id. Thus, object tracking algorithm should

complement the weaknesses of the object detection algorithm, typically the object

missing in between for some frames.

• General object tracking uses 2-Dimensional space. That is, if an object disappears

at one end and reached the other, they are not considered as the same objects. No
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4. SYSTEM DESCRIPTION

general method for tracking in 360◦ videos exists.

We have used an advanced 360◦ version of centroid-based object tracking algorithm

[27] in spherical space to get the object trajectories. The reason for using spherical

projection is that even if an object wraps around over equirectangular frames, it will have

a small solid angle in spherical projection. Hence, instead of using Euclidean distance, we

would prefer to use spherical distance. The algorithm is fairly robust if bounding boxes of

some object go missing for some frames in between, up to a limit of 30 frames. If within

the 30 frames limit, the object reappears, then it is assigned the same ID as before and

the object positions are interpolated for the missing frames. The following is a high-level

description of the algorithm:

1. Get the list of coordinates of objects for each equirectangular frame and compute

their centroid.

2. For the initial frame, allocate each object a unique ID. These can be called as the

currently active objects.

3. For the subsequent frames, perform the following steps to associate objects of the

current frame to the previous frames:

(a) Project each of the centroids of the new and currently active object IDs to

spherical projection as mentioned in Section 3.3.

(b) Find the solid angle (Equation 3.1) between all pairs of new centroids and

existing centroids

(c) It is assumed that within two consecutive frames, the object is expected to

move minimally. Hence, for each newly detected objects, find the active object

which is nearest to it and for which, it is nearest to the active object. Assign

the new object the same ID as the corresponding active object.

(d) In the above case, some new objects may not be assigned any active object

and some active object may not be assigned to any new object. This leads to

two new methods:

i. Register New Object: If a newly detected object is not assigned any

existing active object, means that it has appeared for the first time in the

video. In this case, we assign the object a new ID and register it as an

active object. We would note the start frame of the object’s appearance.

ii. De-register Old Objects: If an active object is not assigned to any

newly detected object in the current frame, it means that the object has
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disappeared/not detected. In this case, we maintain a count of the number

of successive frames for which the object is undetected. If the count crosses

30, we declare the object to be disappeared or removed and the object is

no longer active. We would note the last frame of the object’s appearance.

However, if it reappears within 30 frames, it will be assigned the old object

ID and the count is reset to 0.

4. Finally, we make a pass through all the frames, checking the object IDs and inter-

polating the coordinates for the active objects which were undetected in between.

At the end of this section, for each frame, we have a set of objects, each indexed by

an ID, such that over multiple frames, the same object would be assigned the same ID.

4.2 Viewport Prediction

Predicting the upcoming viewport from the video meta-data and the previous viewports

is a challenging task, especially when we want to model a dynamic system based on the

content of the videos. Upcoming viewport not only depends on the trajectories of the

prime objects, but also remains in the vicinity of the previous viewport. As a consequence,

the learning task must be online, learn viewport based on object trajectories and previous

viewports, and the weights must be updated in an incremental manner in order to be fast

and accurate and can quickly adapt to the changes in actual viewport. This instils the idea

of user preference in the model which is captured by the information about the previous

viewport.

An important and obvious requirement of the streaming model is for it to be able

to predict multiple frames in the future at the same time and stream them in the form of

chunks rather than a single frame at a time, to maintain the quality of experience for the

user. For this, the video is segmented temporally into chunks of duration t seconds, which

are further segmented spatially into m×n tiles. There is a trade-off between the prediction

accuracy and network bandwidth consumption [16] while deciding the chunk size. A larger

chunk size facilitates total network consumption while compromising prediction accuracy,

since user viewport tend to vary within the chunk duration while these changes would get

reflected only after an entire chunk is completed. Studies by Qian et.al.[18, 28], showed

that 1 second chunk duration is optimally good for streaming in viewport adaptive case

which we have used. We also experimented our model with different chunk sizes, the

results and analysis of which is present in Chapter 6.
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Before building our model, we pre-compute the trajectories of all the objects de-

tected in the video using the object tracking algorithm. We have primarily used Passive

Aggressive Regressor[29] and ARIMA model to predict viewport individually. However,

to enhance the prediction accuracy, we have combined the two models effectively to cap-

ture their pros. This section discusses the details of the two models and their augmented

combination.

The viewport prediction algorithm will take the viewports of a set of previous frames

and the object trajectories of the frames corresponding to the upcoming one second as the

inputs. Based on these inputs, it would output a set of predictions for the next chunk in

the form of (Fi, αi, βi) where Fi is the frame number, αi and βi are the x and y coordinates

of the viewport, that can be converted into corresponding tile numbers. Based upon the

actual viewports observed later and the predictions, the model updates itself to adapt to

the user preferences. .

4.2.1 Passive-Aggressive Regression Model

Passive Aggressive Algorithms are well known online learning algorithms. Passive-Aggressive

Regression [29] as a general regression algorithm, computes the mapping f : Rn → R,

f(x; θ) = θTx where, θ,x ∈ Rn. The algorithm uses the Hinge Loss Function, given by:

L(θ, ε) = max(0, |y − f(xt; θ)| − ε)

The Hinge Loss Function is called ε-insensitive. When the predicted viewport and

the actual viewport differ by a value less than ε, then the algorithm is said to act as

passive. Otherwise, the algorithm is said to act as aggressive, because it looks for a set

of weights that ensure that the prediction is as close as the previous one. Hence, the

parameter ε determines a tolerance for prediction errors. The weight update rule for PA

Regression is:

θt+1 = θt + α
max(0, |yt − θTxt| − ε)

||xt||2 + 1
2C

sign(yt − θTxt)xt

C is a slack variable that allows to have soft margin and α is the learning rate. Higher

C values yields stronger aggressiveness, while lower values allow better adaptation.
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4.2 Viewport Prediction

Figure 4.3: Schematic Diagram of the Passive-Aggressive model used. It takes as inputs the

object trajectories and the user viewports and outputs the predicted viewport.

The central Passive-Aggressive Regression model (Figure 4.3) takes as input the

coordinates of the different objects in the frame as well as the viewport of the previous

frame and predicts viewport of the next set of frames. An algorithmic definition of the

steps our formulated in Algorithm 1. In order to prevent the initial zero prediction of the

model, we train the model for the first 5∗fps frames at the beginning. Thus, for these set

of frames, instead of making predictions, we send all the tiles at uniform quality. Based

on the viewports observed in those frames and object trajectories, we train the model to

adapt to the user preferences to make the predictions for the following chunk of frames.

We use the set of predicted frames to calculate the bitrate to be allocated to the

chunk and query to the server. Once this predicted frames gets rendered, we will use the

actual viewports from the user to train the regression model again and repeat the process

for predicting. A second order momentum ν is used to supplement the accuracy of the

predictions. At tth iteration,

νt = ρνt−1 + (1− ρ)
{max(0, |yt − θTxt| − ε)

||xt||2 + 1
2C

sign(yt − θTxt)xt
}2

The advantages of Passive-Aggressive regression over other forms of naive regression

methods are manifold. Firstly, Passive-Aggressive models are explainable, unlike other
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Algorithm 1 Passive-Aggressive Regression based Viewport Prediction

Input: Object Trajectories Of ∀f frames, Streaming Viewport of the user Vf , PA model

M

Output: Predicted Viewport for all frames

1: procedure Get PA Viewport(O, V,M)

2: Initial Training of 5fps frames on model M .

3: List of Predicted Viewports PV

4: for each chunk c do

5: F c ← frames in chunk c

6: Predicted Viewport for first frame cF1 in chunk c (PVF c
1
)←M(OF c

1
, VF c

1
)

7: Append PVF c
1

in PV

8: for frame F c
f ∈ [F c

2 , F
c
c ] do

9: PVF c
f

= M(OF c
f
, PVF c

f−1
)

10: Append PVF c
f

in PV

11: end for

12: Train M on inputs OF c
1
→ OF c

c
and VF c

1
→ VF c

c

13: end for

14: return: PV

15: end procedure

machine learning models like neural networks, which might not be generally explainable

in our case. The coefficients of the parameters in the PA-Regression Model essentially

represent the user preferences at that moment of time. If the coefficient corresponding to

a certain object is higher at some time, it would mean that the user is more inclined to

see that object.

Secondly, Passive-Aggressive Regression model suits better as an online learning

algorithm since at every model update step, it tries to update the model weights in such

a way that they take the predicted value as close to the actual value as possible. Hence,

it adapts better. Also, the prediction and model update time is much faster than other

models. Experimental verification in Section 6.1 justifies the choice of PA Regression over

other regression methods.

However, Passive-Aggressive Regression alone can sometimes lead to larger predic-

tion errors while predicting multiple frames. This is because while predicting multiple

frames, the input given to the model is the predicted viewport from the previous frame.

Hence, even with slight deviations in predicted viewport at every step, the error can be-

come very large eventually, since the error cascades with every prediction. Hence, it might
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4.2 Viewport Prediction

overshoot in some cases.

4.2.2 Time Series (ARIMA) Model

Time series models are often used in predicting head movements of users. Hence, it can

also be used to predict the next viewport of a user while watching a 360◦ video, because

next viewport is essentially a temporal function of user head movement. Compounded

with the applicability, as mentioned already, in order to mitigate the issue of high errors

of Passive-Aggressive counterpart, a time series model, specifically ARIMA model is used

to predict user head movements of the subsequent frames.

ARIMA model of the order (p, d, q) can be written as

Φp(B)(1−B)dXt = Θq(B)Zt

Here, p = order of AR process, q = order of MA process, and d = degree of differencing

Figure 4.4: Schematic Diagram of the ARIMA model used. It takes user viewports as inputs

and outputs the predicted viewport.

The model (Figure 4.4) that we have considered here takes as input the x and y

coordinates (horizontal and vertical components respectively) of the previous viewport

data of the user [Here x ∈ (0,width), y ∈ (0, height)]. We add random(0,0.1) to the

viewport coordinates in order to remove inconsistencies from the data that prevents the

entire viewport data of a chunk from having identical values, thus catering to a positive

semi-definite auto-covariance matrix. The algorithmic steps are mentioned in Algorithm

2.

Augmented Dickey-Fuller test [30] on the raw viewport data proved that the time

series is not stationary. However, ARIMA models require stationarity in the time series.

Thus we project the series into logarithmic domain and furthermore, the series becomes

stationary, once a one-degree differencing is applied on log xt to get log(xt/xt−1). This

differencing is achieved by the ARIMA model.
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Algorithm 2 ARIMA based Viewport Prediction

Input: Streaming Viewport of the user Vf ∀f frames, ARIMA model Mx,My

Output: Predicted Viewport for all frames

1: procedure Get ARIMA Viewport(V,M)

2: List of Predicted Viewports PV

3: for each chunk c do

4: F c−1 ← frames in chunk c− 1

5: (XF c−1
1
, YF c−1

1
)← horizontal and vertical components of VF c−1

1

6: Make series (XF c−1
1
, YF c−1

1
) stationary

7: Train Mx on inputs XF c−1
1
→ XF c−1

c−1
, My on inputs YF c−1

1
→ YF c−1

c−1

8: F c ← frames in chunk c

9: for frame F c
f ∈ [F c

1 , F
c
c ] do

10: PVF c
f
← (XF c

f
, YF c

f
)← Prediction of Mx,My

11: Append PVF c
f

in PV

12: end for

13: end for

14: return: PV

15: end procedure

As illustrated, we train separate models for predicting the X and Y components of

the viewport. We rebuild our model for every chunk(shows a greater accuracy because the

viewport of an user over the length of video is quite random and depends on the whim of

the user, which disrupts the seasonal and stationarity of the time series). The predicted

viewport is then reprojected back from the logarithmic domain to the pixel domain by a

simple exponentiation. While rendering the frames of the current chunk, we can log the

actual viewport data which is then further used for head movement prediction of the next

chunk.

Advantages of ARIMA model over Passive-Aggressive counterpart includes the use of

previous chunks while predicting future viewport. This helps in maintaining the locality

information which remains an integral part in head movement prediction. Since ARIMA

learns on previous data and it does not incorporate the aggressive attribute of Passive-

Aggressive regression, the predictions are smoother with significant reduction in error.

However, ARIMA model does not leverage the information of the video content, that

is the object trajectory while predicting which was being captured in Passive-Aggressive

counterpart. Our claim stands that the user head movement depends on the video content

as well. Hence, to aggregate the positives of both the models, we design an augmented
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model that would alleviate the prediction error as well as strengthen the quality of expe-

rience (QoE).

4.2.3 PARIMA: Augmented PA-ARIMA Model

The model is an combination of Passive Aggressive Regressor and ARIMA time series as

shown in Figure 4.5. The model used by our system combines the pros of PA-Regressor

and the ARIMA model to give a fairly good model for video streaming.

Figure 4.5: Schematic Diagram of the PARIMA model: Augmented PA-ARIMA model used.

It takes user viewports and object trajectories as inputs and outputs the predicted viewport.

As illustrated in Algorithm 3, we have coupled the PA model and the ARIMA model

such that they transfer informations among each other. For a chunk, we first compute the

temporary predicted viewport using the ARIMA model as in Algorithm 2. The output

viewports of these set of frames are fed as input to the Passive-Aggressive Regressor along

with the object coordinates to predict the next set of viewports. Hence, the predicted

viewports are essentially a weighted combination of the PA-Regressor output considering

only the object trajectories and the time series model, with the weights of the two models

being adjusted dynamically based on changing user preferences.

Once the set of predicted frames for a chunk are rendered, the actual viewports of

the user are used to retrain the model weights.

It is important to note that the augmented combination of the two models provides

a much superior Quality of Experience (QoE) than the two models individually. The

results of the experiments are presented in Chapter 7. The model combines the pros

of the PA-Regressor and ARIMA Time Series model since it is fast, adapts to the user

preferences effectively and doesn’t overshoot.
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Algorithm 3 PARIMA based Viewport Prediction

Input: Object Trajectories Of ∀f frames, Streaming Viewport of the user Vf , PA model

M1, ARIMA model M2
x ,M

2
y

Output: Predicted Viewport for all frames

1: procedure Get PARIMA Viewport(V,M)

2: Initial Training of 5fps frames on model M1.

3: List of Predicted Viewports PV

4: for each chunk c do

5: F c−1 ← frames in chunk c− 1

6: (XF c−1
1
, YF c−1

1
)← horizontal and vertical components of VF c−1

1

7: Make series (XF c−1
1
, YF c−1

1
) stationary

8: Train M2
x on inputs XF c−1

1
→ XF c−1

c−1
, M2

y on inputs YF c−1
1
→ YF c−1

c−1

9: F c ← frames in chunk c

10: for frame F c
f ∈ [F c

1 , F
c
c ] do

11: temp PVF c
f
← (XF c

f
, YF c

f
)← Prediction of M2

x ,M
2
y

12: PFF c
f
←M1(OF c

f
, temp PVF c

f
)

13: Append PVF c
f

in PV

14: end for

15: Train M1 on inputs OF c
1
→ OF c

c
and VF c

1
→ VF c

c

16: end for

17: return: PV

18: end procedure

4.3 Bitrate Allocation

Bitrate allocation to tiles should be accomplished in a way such that the tiles correspond-

ing to the viewport should get higher bitrate than the off-viewport ones. This would

maximize the Quality of Experience (QoE). This way, for the same bitrate, the quality of

viewport will be higher.

It is also essential to note that, for a particular chunk, multiple tiles might be pre-

dicted as viewports. This is because our viewport prediction is based on each frame.

Hence, a mechanism is needed to ensure that all the tiles corresponding to the viewport

are given higher bitrate than the rest, and to maintain uniformity, the bitrate should

reduce gradually as we move away from the viewport.

To achieve this, we use a pyramid-based model of bitrate allocation [13]. The pyramid

model gives the highest quality of video to the tile viewed by the user, which gradually
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Figure 4.6: Pyramid Model of Bitrate Allocation. Consider tiles to be numbered as (x,y),

where x and y are the horizontal and vertical positions of the tile from the top-left corner. In

this figure, An equirectangular frame split in 8× 8 tile format, which has viewport at tile (3, 3).

Lower opacity signifies higher proportion of bitrate to be allotted to the tile

decreases till the tile present opposite to the user viewport as shown in Figure 4.6.

To assign a distribution of bitrates to the tiles (i, j) in each chunk c, we use a weight

function that would capture the how much proportion of the total bitrate that should be

given to a specific tile (i, j). Whenever a tile (i′, j′) is a candidate viewport, its weight is

increased by a unit and the weights of the other tiles are increased based on a pyramid

approach where the farthest tiles weigh the least. This weight function is normalised and

then used to assign bitrates to each tile accordingly as formulated in Algorithm 4.

For 360◦ videos, it must be noted that since the video frame wraps around into a

spherical one, the Manhattan distance between two a tile and viewport can be different

than in case of a general 2D-video frame. The distance between two tiles in a 360◦

equirectangular frame is the minimum of the distance seen directly in the frame and the

distance obtained by wrapping around through the one of the ends of the frame. For

example, in Figure 4.6, consider the distance between tile (8, 4) and (3, 3). If we calculate

the Manhattan distance directly, the distance is given by |8 - 4| + |4 - 3| = 6 units.

However, when we consider the frame to be wrapped around, the actual distance is |8 - (3

+ 8)| + |4 - 3| = 4 units. Hence, we take the minimum Manhattan distance for allocation

of bitrates.
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Algorithm 4 Assign Bitrates to Chunks

Input: Predicted Tiles for each frame Tf , preferred bitrate Bp

Output: Allocated Bitrates for each chunk Bc

1: procedure SelectBitrates(Tf , Bp)

2: Initialize Bitrate Bc

3: for each chunk c do

4: Initialize weightij for each tile (i, j)

5: for each frame fc in c do

6: (i′, j′)← tile viewport in frame fc

7: weighti′j′ ← weighti′j′ + 1

8: for all (i, j) 6= (i′, j′) do

9: dij ← min. manhattan dist. from (i′, j′)

10: if (i, j) within Video Player FoV then

11: weightij ← weightij + 1− 2∗dij
max(dij)

12: else

13: weightij ← weightij + 1− dij
max(dij)

14: end if

15: end for

16: end for

17: Bij
c ←

weightij∑
i,j weightij

Bp, ∀(i, j)
18: end for

19: return: Bc

20: end procedure

4.4 Video Streaming

This section deals with the actual streaming of 360◦ videos through a server-client system.

The streaming system was built to understand the intricacies of video streaming and

testing our model. The system is divided into two parts:

1. Server: The server stores the video encoded in a certain format in different bitrates

such that it is feasible for network transfer. The video frames cannot be directly

transmitted over the network due to bandwidth constraints and different bitrates

of different tiles. For each chunk, for each tile, the server would store it encoded

in different bitrates. Whenever a client requests for some video chunk, given the

bitrates of each of the tiles, the server simply returns the tile corresponding to the

bitrate requested.

26



4.4 Video Streaming

2. Client: The client streams the video to the user, collects the viewports for t seconds

(t is the chunk duration; in our case, t=1) in the back-end, applies the model to

predict the bitrates for the following chunk and requests the same from the server.

Upon receiving the requested chunks for each tile, they are decoded and streamed

by the client.

4.4.1 Video Encoding

The video first needs to be compressed in a content representation format for efficient

storage and streaming. We have used the High Efficiency Video Coding format, also

known as HEVC or H.265 for video coding. This format provides better compression

at the same video quality, thus saving storage space and better quality for the same

bitrate, compared to other previous encoding formats using slightly higher computation

costs. HEVC trades off computation cost for lower storage [31] and it is beneficial, since

computation is one-time, however lower file size has the benefit during the transfer of data

over the network.

HEVC aims towards providing twice the compression efficiency than the previous

version H.264, thus reducing the file size for a certain segment, hence providing much

better quality for the same bitrate [32]. The difference between HEVC and its previous

versions lies in its ability to use extra computation to discover larger redundant areas

in the same frame and within multiple frames, hence reducing the file size. The HEVC

encoder uses the concept of motion vector to detect the redundant regions in the video

frames.

Motion Constrained Tile Set [33, 34] or MCTS is a mechanism of encoding used in

tiling-based streaming of videos, where the motion vector is restricted within the tile that

it belongs to itself. Thus, a tile can reference to regions only within the same tile. Hence,

any redundant areas will be encoded within the same tile, so that each tile can be encoded,

transmitted and decoded independently and there are no dependencies among different

tiles. In case of viewport adaptive 360◦ video streaming, since each tile chunk is sent

at a different bitrate based upon the viewports in that chunk, if there are dependencies

between different tiles, the chunks cannot be encoded and decoded separately and hence,

cause problems. Hence, we use motion constrained tiling in this case.

To convert the videos to HEVC standard, we use ‘Kvazaar’ [35], an open source

HEVC/H.265 encoder. It is used to encode the video given the bitrate, number of tiles

and the number of frames per second. It generates a raw HEVC bitstream which contains

all the encoded information for various tiles. To divide the encoded bitstream spatially
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and package it, we use the MP4Box Tool by GPAC [36] to generate an MP4 file containing

a base track of parameter sets and one track for each tile.

4.4.2 Generating DASH Segments

The output file obtained from the above step is then fed to MP4Box to generate DASH

Segments. DASH (Dynamic Adaptive Streaming over HTTP)[14] segments are a sequence

of small HTTP segments, each containing a certain playback duration of the video. DASH-

ing videos is needed for streaming media content over conventional HTTP server-client

architecture. MP4Box can generate segments of one second and since we have used the

motion constrained tile based encoding, the output has segments for multiple tiles, each

in different size. The size corresponds to the bitrate of the tile. These DASH segments

can be generated for multiple bitrates (different qualities) and stored on the server side.

These segments are in the m4s format.

DASHing also creates MPD (MPEG-DASH) files which hold the information on the

various streams and their associated bandwidths. At a higher level, the MPD file basically

stores the meta-data of the location of video segments along with video meta-data in

XML-based format.

4.4.3 Streaming 360◦ videos

Once the DASH Segments are generated and stored on the server side, the 360◦ videos can

be streamed using MP4Client [36], which requires the server address and the location of

the MPD file to stream the video. MP4Client is an easily configurable multimedia player

created as a part of the GPAC that can be used to stream the 360◦ videos easily.

The main components of MP4Client are:

1. Input, demuxing and decoding filters as defined as part of GPAC

2. The Compositer module, which is responsible for media composition and interac-

tivity in the video

3. The aout filter for audio output processing

To test the viewport adaptive streaming, the PARIMA model was written in the

Compositor module of the MP4Client. The video streaming system was tested using two

computers: one acted as a server with all the video data and the other acted as a client

which streamed the video.
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Chapter 5

Evaluation Testbed

This chapter will abridge the evaluation of the algorithm on various datasets. The eval-

uation strategy will follow a two-fold approach, that is, assess the accuracy of viewport

prediction and summarize the Quality of Experience (QoE) metric. First, we will give

a brief description of the datasets on which we have evaluated our algorithm, baseline

against which we have presented the results and then discuss about the metrics.

5.1 Datasets

For evaluation of the various algorithms implemented, we use two popular datasets con-

taining several 360-degree videos of different categories along with head tracking log. The

first dataset (ds1) [4] includes five videos freely viewed by 59 users each. Every user

has watched 70s of each of the videos during which their head movement logs have been

tracked using a Head Mounted Display (HMD). The second dataset (ds2) [37] has 9 pop-

ular videos watched by 48 users. The average duration of the head tracking logs is 164

seconds, with a minimum of 60 seconds and a maximum of 655 seconds. Essentially, we

have datasets corresponding to 727 cases of users watching 360◦ videos. Each trace of

the head tracking logs for both the datasets consists of the user head position in terms

of unit quaternions (q0, q1, q2, q3) : q = (q0, q1î + q2ĵ + q3k̂) along with the frameID and

timestamp.

From the head tracking logs, viewport and the viewport-specific tile are derived

according to the algorithm suggested by Nguyen [10]. Given a head orientation represented

as a quaternion, the head orientation vector u can be derived by applying a counter-

clockwise rotations along a specific axis on its reference unit vector v. We have used the

python library ‘pyquaternion’[38] for this transformation. Thus from the head orientation

vector u = (x, y, z) on the 3D sphere, we can easily convert it to get the pixel coordinates
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using the formulae:

a =
(1

2
+

θ

2π

)
∗W

b =
(
1 +

φ

π

)
∗ H

where a and b are the longitude and latitude positions in the equirectangular frame,

θ and φ are the horizontal and the vertical angles of the head orientation vector u in

3D space (following our convention), W and H are the width and height of the target

equirectangular frame.

Details of the dataset statistics can be found in Appendix A.

5.2 Baselines

The baselines against which we have evaluated our model are listed in this section along

with a brief explanation of each of them.

5.2.1 PanoSalNet

Saliency Map based viewport prediction has been explored in PanoSalNet [7] where the

authors have trained a Deep Convnet (DCNN) architecture to understand the salient

portions of each panoramic frame of a 360-degree video. The main intuition behind

constructing the saliency map of an image is that the user head movement and visual

attention depends mostly on specific portions of a video that are termed as salient, a claim

concurrent to ours. Coupled with saliency map, the authors have integrated user head

tracking history for the ultimate head movement prediction via an LSTM architecture.

5.2.2 Non-Adaptive Bitrate Allocation (NABA) Model

The primary goal of our video streaming model was to improve the Quality of Experience

of the user by providing higher bitrate to the tiles corresponding to the viewport and

hence, higher quality to those tiles. Hence, an important baseline to judge our model

is a non-adaptive 360◦ video streaming model. Under this streaming model, there is no

viewport-adaptation and hence, bitrate is allocated to all the tiles in a uniform manner

regardless of the viewport. In general, if B is the bitrate of streaming and the video is

spatially divided into M x N tiles, then the bitrate allotted to a tile will be B/(M x N).

Any adaptive streaming model would be better only if the QoE obtained for the video is

better than non-adaptive streaming model.
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5.3 Evaluation Metrics

5.3.1 Prediction Metrics

The metrics defined below is a measure of the prediction algorithms used in the evaluation.

Mean Absolute Error (MAE)

Let (x, y) be the pixel level actual viewport as obtained from user head movement dataset,

and (x′, y′) be the pixel level viewport predicted by an algorithm. Mean Absolute Error is

the average absolute error between the x and y predicted pixels and the actual pixels. We

have separate metrics to log the error in x-coordinate and y-coordinate. Mathematically,

it is defined as

MAEx =

∑nf

f=1 |xf − x′f |
nf

We have reported an averaged MAE value over all frames and users for a particular video.

Manhattan Tile Error

Let (x, y) be the actual tile index of the viewport, that is, the tile in which the actual

viewport lies, and (x′, y′) be the predicted tile index. Manhattan Tile Error is the average

manhattan distance between (x, y) and (x′, y′), that is, |x− x′|+ |y− y′| for all frames in

a video.

It is to be noted that in a 360-degree setting, minimum manhattan distance between

two tiles can be as a result of wrapping around either in the vertical, horizontal or in

both the direction. For example, in a scenario of 8 × 8 tiling, with actual viewport tile

index as (0, 1) and predicted viewport tile index as (1, 7), the Manhattan Tile Error will

be |0 − 1| + |(8 − 7) − 1| = 3, which included wrapping horizontally. Secondly, we have

taken Manhattan Tile Error as 0 if the predicted viewport lies within video player FoV

of the actual viewport.

Matrix Error

Let A and B be mn matrices where m× n is the tiling order. Let the actual tile index of

the viewport be (x, y) and predicted tile index be (x′, y′). The matrices are defined as:

A(x, y) = 1,A(i, j) = 0 ∀i 6= x, j 6= y

B(x′, y′) = 1,A(i, j) = 0 ∀i 6= x′, j 6= y′
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Matrix Error between two matrices A and B is defined as:

d =

√√√√ m∑
i=1

n∑
j=1

(B(i, j)−A(i, j))2

We report the average Matrix Error of all the frames in a video.

Accuracy

Accuracy is the fraction of the number of frames in which the predicted viewport was in

the video player FoV of the actual viewport over the total number of frames in the video.

Simple, it is the fraction of the number of frames having Manhattan Tile Error=0 over

the total number of frames.

Acc =
# Frames with Manhattan Tile Error = 0

Total Frames

5.3.2 QoE Metrics

User perceived quality is measured in deterministic fashion using several QoE metrics

that we define which empirically evaluates the performance of our approach.

1. The first of the QoE metric (Q1) will be the average bitrate consumed by the user.

In essence, it denotes the quality of the video perceived by the user. For each chunk

of frames, we calculate the normalized sum of bitrates of the tiles that lies in the

viewport. Let there be X × Y number of tiles in the video with a media player

viewport dimension as Pw × Ph. Mathematically, for chunk c, Qc
1 is denoted as

Qc
1 =

1

nc

fc∑
i=1

( ∑
Pw×Ph

aix,yB
c
x,y

tiles(Pw)× tiles(Ph)
)

where, fc is the number of frames in chunk c, or equivalently it is fps*duration of chunk.

Each tile can be represented using cartesian coordinates where x ∈ X , y ∈ Y . Bi
x,y

elicits the bitrate for (x, y)th tile in chunk c and aix,y is an indicator variable which

becomes 1 if tile (x, y) is in the viewport of ith frame of chunk c. tiles(Pw)×tiles(Ph)
amounts to the total number of tiles present in the viewport.

nc is the normalizing constant which is calculated by the sum of distinct tiles that

are in the viewport for chunk c.

2. The second QoE metric (Q2) is a measure of the variation of quality within the

viewport for each frame. This is an important measure while maximizing QoE since
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we want to have a minimum variation among the qualities of various tiles in the

viewport. For chunk c, we denote this metric Qc
2 as

Qc
2 =

1

nc

fc∑
i=1

StdDev{Bc
x,y : x ∈ tiles(Pw), y ∈ tiles(Ph)}

3. The third QoE (Q3) is similar to Q2 but it captures the variation of quality among

different frames for a chunk.We would like to minimize the amount of variation of

quality from a viewport of frame f1 to a viewport of frame f2. For chunk c, we

denote this metric Qc
3 as

Qc
3 =

1

nc
StdDev{

∑
Pw×Ph

aix,yB
c
x,y

tiles(Pw)× tiles(Ph)
: aix,y = 1; ∀i ∈ fc, x ∈ X , y ∈ Y}

4. Variation of quality across different chunks also impacts QoE, which forms the third

component of the QoE metric (Q4). Thus, it is important to quantify the amount of

variation of quality from one chunk to the immediate next chunk. For any arbitrary

chunk c, Qc
4 can be mathematically expressed as

Qc
4 = |Qc

1 −Qc−1
1 |

The final QoE metric is an aggregation of all the above described components, which

is expressed as:

Q =
C∑
c=1

(Qc
1 − η1Qc

2 − η2Qc
3)− η3

C∑
c=2

Qc
4

where C is the total number of chunks that has been formed, and η1, η2andη3 are hyper-

parameters which specifies the amount of importance we give to each of the QoE metric.

5.4 Evaluation Setting

• In our experiments, each video is temporally segmented into chunks of 1 second

duration, which are further spatially segmented into 8 x 8 tiles, thus forming a total

of 64 tiles. We have exposited a study in the next section showing our choice of

temporal chunk duration.

• Video player Field of View(FoV) is chosen to be of the dimension of 600×300 [39, 40]

for experimentation.
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• For the horizontal dimension, we have chosen the ARIMA model to be of order

(2,1,1) while for the vertical dimension, the order is (3,1,0). By examining the

Autocovariance Function (acf) and the Partial Autocovariance Function (pacf), we

have finalized the orders of the ARIMA model.

• For the Passive Aggressive Regression model, the hyperparameters that we have

chosen are: i) C = 0.01, ii) ε = 0.001, and iii) learning rate = 0.001.

34



Chapter 6

Evaluation Results

This chapter discusses the results of the evaluation carried out over the duration of the

project. The chapter is organised as follows:

1. Evaluation for the best regression model for predicting one frame at a time

2. Finding the optimal chunk size for video streaming

3. Analysis of performance of various models and comparison with baseline Panosalnet

4. Comparison of performance of the models with non-adaptive video streaming to

ensure better QoE

6.1 Prediction For One Frame: Regression Models

The first set of experiments were performed to judge the best regression model that can

be used among different possibilities for predicting the viewport for the next frame given

the object trajectories and the viewport of the previous frame. The reason for trying

regression models over other machine learning models has been discussed in section 4.2.1.

We first try predictions for only one frame because if a model cannot predict well for one

frame, then it won’t be able to give reliable predictions for a chunk of frames. For this

experiment, we built a Java application for viewport data collection over a 360◦ video. s

6.1.1 Viewport Data Collection

An android application was created which was responsible for playing the video and

capturing the viewport throughout the length of the video. The android application

uses ‘Google VR SDK’ API through which the video can be played in VR mode. The
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application is built in order to detect the viewport of the users. It does so using the

gyroscopic fluctuations while playing the video. The gyroscopic sensor of the phone

triggers the EventListener object of the Java application, which periodically saves the

gyroscopic data into a file. A screenshot of the application is provided in Appendix B.

Gyroscopic data provides angular velocity in each Cartesian direction when the de-

vice is moved. Thus, from the data, we can get the orientation of the view as well as

the position of the view in a spherical space. One can easily use the trapezoidal rule of

integration to calculate the angular displacement when the device is moved.

Let the initial center of the viewport be (xinit, yinit, zinit). After time t, we record the

gyroscopic data for three axes as (α, β, γ). Therefore the new center of the viewport at

time t can be calculated as:

(xnew, ynew, znew) = (xinit + αt, yinit + βt, zinit + γt)

Thus, the new viewport in the spherical space now becomes (xnew, ynew, znew).

6.1.2 Regression Models

Several regression models were experimented to determine the appropriate model for

predicting future viewport when the viewport data can change abruptly. The models

were tuned so as to predict the viewport of only the next frame, which was then later

generalized to a prediction window. The different models that were used comprised of:

• Linear Regression: A simple linear regression model that takes the positions

of the objects and the previous viewport as input and produces the predicted next

viewport as the output.

• Passive-Aggressive Regression: It was already discussed in Section 4.2.1. How-

ever, we need to make a minor trivial change to the model to predict for only the

next frame, that is, have a prediction window of 1.

• Box-Cox Regression: Box-Cox power transformation is often used to modify the

distributional shape of the response variables so that the residuals are more normally

distributed. The transformation often proves to be effective for stabilizing variance

and make the distribution more ’normal-like’. In our method, we apply Box-Cox

transformation on the target variable, that is, the viewport information.
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6.1 Prediction For One Frame: Regression Models

6.1.3 Observations

In this section, we will evaluate the performance of the regression models on a 360◦ video.

The video involved 3 moving prime objects. Viewers were asked to look at the video

through the android application that captured the angular velocity of the device. We

have used creme [41], an incremental machine learning library to build our model and

evaluate the performance.

The hyper parameters used for the different models are as follows:

• Linear Regression: SGD optimizer with η = 0.0005

• PA Regression: C = 0.01, ε = 0.001

• Box-Cox Regression: λ = 0.8, η = 0.0001

To compare different models of regression, we analyse them at pixel level and hence,

we plot the MAE values against the frames viewed by the user (Figure 6.1). We also plot

time series graphs of the actual and predicted viewport with respect to the frame number

(Figure 6.2). Table 6.1 and 6.2 tabulates the performance of each model on the video.

Linear Regression PA Regression BoxCox Regression

User 1 155.125 18.867 193.271

User 2 157.766 16.791 215.367

User 3 182.246 30.038 256.309

User 4 230.048 70.362 304.074

Table 6.1: Final MAE value (after trained on the full video) for different regression models.

Linear Regression PA Regression BoxCox Regression

User 1 10.76% 1.30% 13.42%

User 2 10.96% 1.16% 14.96%

User 3 12.66% 2.08% 17.78%

User 4 15.96% 4.88% 21.12%

Table 6.2: To understand the prediction qualitatively, we judge the MAE as percentage of

the maximum possible error (width+ height)/2
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Figure 6.1: Comparison of MAE for different regression models for two users

Figure 6.2: Plot of actual and predicted viewports with respect to the frames for User 1
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6.2 Predicting Viewport for Multiple Frames

It is evident from the results that Passive-Aggressive Regression is the best regres-

sion model among the rest. This also supports the statements from [42] that these are

online learning algorithms that have been found to be superior than many other learning

algorithms.

6.2 Predicting Viewport for Multiple Frames

The above experiments were to find the model that fits best for predicting the next frame.

However, predicting the viewport for each future frame and pinging the server to deliver

the next frame with a certain quality is not feasible. This is because there is a lag between

the communication of server and client and the prediction time. Hence, the video will

buffer after every frame. Thus, the next aim is to predict the viewports in a prediction

window of chunk of size t. Such a setup would make the streaming feasible, since the

client will buffer an entire chunk of video comprising of multiple frame by the time it gets

a new chunk.

6.2.1 Analysis of Optimal Chunk Size

Studies like Flare [18] have analysed that 1 second chunk duration is optimal for viewport-

adaptive 360◦ video streaming. Choosing the optimal chunk size essentially involves a

trade-off between the prediction accuracy and the buffering time. If we keep a small

chunk size, the prediction of viewport for the frames in that chunk will be more accurate,

however the prediction and data-transfer time would have to be fast. For larger chunk

sizes, on the other hand, we might suffer from poor accuracy. We analysed the three

models discussed in Section 4.2 for four different chunk sizes: 0.5 seconds (chunk size:

fps/2 frames), 1 second (chunk size: fps frames), 1.5 seconds (chunk size: 3fps/2 frames)

and 2 seconds (chunk size: 2fps frames).

We obtained the results for two videos from dataset 1, namely paris and timelapse,

and plotted the average QoE for the 59 users for different learning models with respect

to chunk size. The plots for the same have been shown in Figure 6.3.

6.2.2 Observations

It was observed that for almost all cases, the QoE reduces as we increase the chunk size,

which was the expected result, since we assume in the experiment that we have sufficient

bandwidth. QoE only accounts for the bitrate distribution and network adaptation is not

considered for streaming.

39



6. EVALUATION RESULTS

(a) Video ‘paris’ of dataset 1.

fps=60

(b) Video ‘timelapse’ of dataset 1.

fps=30

Figure 6.3: The impacts of prediction window on the QoE of the head movement prediction

models

However, for practical streaming purposes, it is essential to note that choosing chunk

size as fps (or 1 second) is better than fps/2 (or 0.5 seconds) due to the following reasons:

1. Cannot DASH Segments of less than 1 second: Every video encoding al-

gorithm generates video segments of at least 1 second. Smaller duration DASH

segments cannot be created.

2. Bitrate and Compression Inefficiency: If we have a smaller chunk size, then

less number of redundant areas would be discovered within that chunk, since more

number of frames means more possibility of combining redundant data. Also, every

segment is accompanied by additional meta-data. Smaller chunk size means larger

number of chunks, less compression of redundant areas and more meta-data. Hence,

the total size of two 0.5 second chunks would be larger than one 1 second chunk.

Thus, for the same bitrate, smaller chunks would be streamed at comparatively poor

quality.

3. Prediction and Network Transfer Time: Practical streaming systems may not

have sufficient bandwidth and hence, prediction of viewport and transfer of data

from server to client may take time more than 0.5 seconds sometimes.

Through the above arguments, we claim that chunk size of 1 second duration is

optimal in general.
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Topic # Objects Metric PA ARIMA PARIMA PanoSalNet

Tile Error 1.434 0.008 0.612 1.237

paris 8 Matrix Error 1.098 0.412 1.097 1.112

QoE 76.08 91.20 184.02 72.02

Tile Error 0.825 0.008 0.685 1.481

timelapse 61 Matrix Error 1.095 0.456 1.139 0.996

QoE 30.02 30.15 121.45 38.69

Tile Error 0.994 0.006 0.353 1.124

venice 14 Matrix Error 1.130 0.387 1.110 0.995

QoE 47.36 229.36 303.87 92.49

Tile Error 0.524 0.007 0.337 1.341

diving 41 Matrix Error 0.954 0.401 1.235 1.001

QoE 219.69 204.03 234.58 126.55

Tile Error 0.495 0.009 0.234 0.928

roller 66 Matrix Error 0.958 0.382 0.827 0.998

QoE 173.54 137.18 384.22 112.45

Table 6.3: Comparing Metrics for videos in ds1.

6.3 Model Comparison

From the previous section, we have said that the optimal prediction window that must

be used should be 1 second (fps frames). We have used this predicition window for all

the experiments henceforth. However, with a variety of model at our disposal, we need

to choose the appropriate model that would qualify our evaluation. Hence, this section

exposits a comparative study between the different algorithms that we have stated earlier.

A comprehensive evaluation report is tabulated in Table 6.3 and 6.4. The results that

have been shown are averaged over all the users for a particular video.

We observed that PARIMA consistently exhibits a superior QoE than the other

models for almost all the videos. Passive-Aggressive Regression tends to show extremely

high tile error, and even overshoot in some cases. ARIMA model displayed extremely low

tile error values and the tile error for PARIMA is low as well. The steep difference in the

QoE between ARIMA and PARIMA models is attributed in the bitrate allocation scheme,

because of which ARIMA had large difference in the bitrates of the predicted viewport and

non-viewport regions, whereas bitrate allocation for PARIMA was smoother over various

chunks, leading to lower Q4 values. The matrix error which is a measure of the prediction
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error is comparable for PARIMA and PA for ds1 but is minutely deviated from the ARIMA

model for the datasets. However, the baseline PanoSalNet consistently performs worse

than ARIMA or PARIMA in all the metrics, thus supporting the experimental results.

Topic # Objects Metric PA ARIMA PARIMA PanoSalNet

Tile Error 2.612 0.025 0.144 0.458

Vid0 41 Matrix Error 1.338 0.354 0.595 0.898

QoE 26.84 184.76 225.34 150.42

Tile Error 1.796 0.027 0.155 1.995

Vid1 77 Matrix Error 1.298 0.368 0.674 0.938

QoE 32.98 143.85 172.95 79.88

Tile Error 3.358 0.014 0.149 1.764

Vid2 92 Matrix Error 1.381 0.395 0.671 0.899

QoE 13.23 346.01 337.70 173.76

Tile Error 45.306 0.025 0.133 2.141

Vid3 25 Matrix Error 1.264 0.333 0.556 0.789

QoE 48.09 390.82 403.42 128.47

Tile Error 2.616 0.033 0.177 1.217

Vid4 40 Matrix Error 1.345 0.483 0.770 0.899

QoE 4.71 52.75 98.56 71.45

Tile Error 1.483 0.035 0.178 1.491

Vid5 397 Matrix Error 1.228 0.425 0.715 0.937

QoE 30.77 300.61 291.32 150.48

Tile Error 2.758 0.007 0.178 0.823

Vid6 1105 Matrix Error 1.414 0.229 0.715 0.966

QoE 39.93 184.66 219.32 191.035

Tile Error 2.342 0.012 0.175 1.495

Vid7 166 Matrix Error 1.323 0.408 0.731 0.813

QoE 19.12 195.79 198.97 168.612

Tile Error 1.707 0.016 0.104 1.236

Vid8 77 Matrix Error 1.302 0.329 0.600 0.809

QoE 42.58 477.11 498.71 203.824

Table 6.4: Comparing metrics for videos in ds2.

We can note a fact from the tables (Table 6.3 and 6.4) that the PARIMA model
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provides consistent results when there are less object (ds1, topic ‘paris’) as well as with

large number of objects (ds2, topic ‘Vid6’), thus showing that the PARIMA model is

robust to the number of objects present in the video. However, it is to be noted that the

number of objects displayed in the tables is an empirical one and is calculated using the

Object detection algorithm proposed in Sections 4.1.2 and 4.1.4.

Figure 6.4 plots the accuracy of the various models on the two datasets. The accuracy

values are tabulated in Table 6.5. Accuracy is defined as in Section 5.4.1. We have

reported the average accuracy over all the videos and users for a particular dataset.We

observe that the accuracy of PARIMA and ARIMA are comparable in both the datasets

while PanoSalNet performs below par with respect to PARIMA. This again supports our

claim that viewport depends on the object trajectory and hence the viewport contents.

(a) Overall Accuracy of different algo-

rithms for both the datasets.

(b) Combined overall Accuracy of bothe the

datasets

Figure 6.4: The accuracy of the proposed models ARIMA and PARIMA are comparable in

both the datasets and beats the baseline PanoSalNet comprehensively.

Dataset No. PA ARIMA PARIMA PanoSalNet

ds1 70.92% 86.6% 82.32% 67.04%

ds2 63.53% 83.2% 86.26% 64.77%

ds1+ds2 66.37% 84.51% 84.77% 65.64%

Table 6.5: Accuracy of models for the different datasets.
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6.4 Viewport Adaptivity: Comparison with NABA

In the final set of experiments, we compare the adaptive vs non-adaptive bitrate allocation

scheme and elicit the conclusion where one performs better than the other.

6.4.1 Rate Adaptive Tiles

(a) Non Adaptive Bitrate Allocation.

Download the full video

(b) Pyramid Bitrate Allocation.

Download tiles according to rate

Figure 6.5: Example illustrating the difference between two schemes of bitrate allocation and

downloading the video in different resolution for the two schemes

As stated in Section 3.4, bitrate of a video refers to the amount of data that is

streamed over a network in a second. Hence, for fixed bitrate (Eg., 5Mbps), the network

can transfer a 5Mb of data over 1 second. Hence, irrespective of the frame size of a video,

a fixed amount of data can be transferred in a chunk of 1 second. Thus, while streaming

a video using non-adaptive bitrate allocation scheme (Figure 6.5(a)), all the tiles of the

video gets equal distribution of rates and since all rates of all the tiles must add up to

a maximum allowable bitrate amount, each tile gets a significantly lower amount. For

example, for 5Mbps bandwidth and a 360◦video with 64 tiles, each tile gets a rate of 5/64

Mbps.

On the contrary, if we use an adaptive bitrate based on viewport prediction (Figure

6.5(b)), each tile would get a weighted rate. Thus, a tile having a maximum probability

of being in the viewport will get a higher share than the tiles that are far away from the

predicted viewport. Thus, such a distribution of rate among the tiles would increase user

experience and improve QoE.
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6.4 Viewport Adaptivity: Comparison with NABA

6.4.2 Observations

Bitrate Allocation paris timelapse venice roller diving

Pyramidal

(PARIMA)
184.02 121.45 303.87 234.58 173.54

NABA 47.41 38.34 53.15 66.77 53.91

Table 6.6: Average QoE for all users of each video in ds1

Bitrate Allocation Vid0 Vid1 Vid2 Vid3 Vid4 Vid5 Vid6 Vid7 Vid8

Pyramidal

(PARIMA)
225.34 172.95 337.70 403.42 98.56 291.32 191.32 195.97 498.71

NABA 170.65 157.73 154.88 176.76 93.86 161.93 162.11 148.02 169.73

Table 6.7: Average QoE for all users of each video in ds2

To demonstrate the above result, we have experimented with two bitrate allocation

schemes. NABA refers to the non-adaptive bitrate allocation scheme, while for the adap-

tive rate allocation, we have chosen the PARIMA model. As already mentioned, we have

used a pyramid based rate allocation scheme. Table 6.6 and 6.7 tabulates the average

QoE of all the users for videos of particular datasets.

We observe that Pyramidal allocation scheme defeats NABA in almost all the videos,

and hence we can say that in general setting, adaptive bitrate scheme performs better

than NABA.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions from the Experiment

IN summary, we have developed an end-to-end streaming platform for 360◦videos that

includes the prediction of viewport followed by pyramid-based rate adaptation of tiles

based on the predicted viewport. From the extensive experiments conducted, several

conclusions have surfaced which are as follows:

1. Using the results tabulated, we concluded that the viewport of the user depends

upon the previous viewport as well as the positions of the prime objects in the

video. Since it is nearly impossible to obtain exact object trajectories, we used an

approximate method, which was observed to work well.

2. PARIMA model leverages the benefits of the time series model as well as the Passive-

Aggressive Regressor. ARIMA model can capture the locality of viewport better

since it is fed with data of only the previous chunk, while the information of object

trajectory is better captured by the Passive Aggressive Regressor, since it can adapt

quickly. With the experiments performed, we can observe that PARIMA has the

highest QoE value and beats the baseline comprehensively.

3. A prediciton window of 1 second (fps frames) is optimal owing to the fact that

compression efficiency is maintained and network transfer time is optimal. A smaller

chunk size would make a video buffer due to network transfer time.

4. Adaptive bitrate allocation exhibits a higher QoE than NABA, owing to the fact

that it brings only those portions of the video with a higher bitrate which is predicted

to be in the viewport for the next chunk. Hence, this increases the overall quality

of the video as seen by the user.
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7.2 Future Work

7.2 Future Work

We have developed a viewport adaptive streaming platform where the next frames are

transferred with a quality based on the viewport prediction.However, there lies an un-

derlying assumption that network bandwidth will remain constant and would not under

perform. Thus our model is agnostic towards network inconsistencies.

Hence, as a next step and a sane direction would be to predict the network incon-

sistencies and allocate the tile rate based on it. Thus as a future work, we can combine

the viewport based adaptive rate and network based adaptive rate to get a better under-

standing of the network over which the video is to be transferred and hence improve QoE.

We also plan to further validate our work using larger studies related to live streaming

large datasets.

Saliency map can be used as well along with object trajectories to get a better

representation of the video. This would help in decreasing prediction accuracy. Instead

of pixel level prediction, probability based prediction can be also be a possible direction.
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Appendix A

Dataset Statistics

Video Name Content Description & Expected Focus of Attention Spatial Resolution Frame Rate Bit Rate Start Offset

Diving
Diving scene. Slowly moving camera, no clear horizon.

No main focus expected within the sphere.
3840×2048 pixels 29.97 fps 19604 kbps 40 s

Rollercoaster
Rollercoaster. Fast moving camera fixed in front of a moving roller-coaster.

Strong main focus following the rollercoaster trail.
3840×2048 pixels 30 fps 16075 kbps 65 s

Timelapse
Timelapse of city streets. Fixed camera, clear horizon with a lot of fast moving

people/cars, many scene cuts. Focus expected along the equator line.
3840×2048 pixels 30 fps 15581 kbps 0 s

Venice
Virtual aerial reconstruction of Venice. Slowly moving camera.

No main focus expected within the sphere.
3840×2048 pixels 25 fps 16101 kbps 0 s

Paris
Guided tour of Paris. Static camera with some smooth scene cuts.

Focus expected along the equator line.
3840×2048 pixels 60 fps 14268 kbps 0 s

Table A.1: Description of the YouTube 360-degree videos used in the first dataset de-

scribed in Section 5.1(ds1).

Video No. Video Name Category Spatial Resolution Frame Rate Bit Rate

0 Conan360-Sandwich Performance 2560×1440 pixels 29 fps 5619 kbps

1 Freestyle Skiing Sport 2560×1440 pixels 30 fps 8491 kbps

2 Google Spotlight-HELP Film 2560×1440 pixels 30 fps 7868 kbps

3 Conan360-Weird Al Performance 2560×1440 pixels 25 fps 5672 kbps

4 GoPro VR-Tahiti Surf Sport 2560×1440 pixels 29 fps 9317 kbps

5 The Fight for Falluja Documentary 2160×1080 pixels 29 fps 4948 kbps

6 360 Cooking Battle Performance 2560×1440 pixels 25 fps 5423 kbps

7 LOSC Football Sport 2560×1440 pixels 25 fps 6083 kbps

8 The Last of the Rhinos Documentary 2560×1440 pixels 29 fps 4236 kbps

Table A.2: Description of the 360-degree videos used in the second dataset described in

Section 5.1(ds2).
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Appendix B

Android Application for Viewport

Data Collection

Figure B.1: Android Application that can collect the viewport data using gyroscopic metrics.

Data gets saved incsv format which can be further processed to get the pixel level viewport
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