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Abstract

Blockchains have been used increasingly in various domains including education, AI,

health-care, supply chain and others. The primary reason for its success is the assured

privacy and immutability of records. On the other hand, with an increase in the amount

of user data, the paradigm of distributed machine learning has gained importance where

a model is trained on local clients instead of training the model with complete data in a

central server. Federated Learning has gained traction as the most popular distributed

training method that also ensures security guarantees while training model on edge clients

and can support training of a model with datasets having non-iid distribution.

Recently, to increase security and maintain privacy, Federated Learning has been

coupled with blockchain where individual models are stored as a ledger by the clients and

can be used to aggregate and update the global model. Researchers have proposed various

methods to tackle this problem of coupling federated learning with blockchain. However,

in all of the techniques, only a single blockchain network was used to train the model.

This report presents a method to incorporate interoperability of blockchains to ensure

cross-chain training of a learning model. This might be a sought-after feature when

multiple organizations under different blockchain networks might opt for a multi-task

learning/transfer learning scheme for their models. The principle idea is to train a model

in one blockchain and then transfer the state of the model to a foreign blockchain for

further use. Thus, we have developed an end-to-end system architecture than can enable

cross-chain training of a learning model via transfer of appropriate assets. This involves

designing of a federated learning system intertwined with blockchain network, transfer of

assets and collective signing of the transactions before transferring and then verification

of the model when they are transferred across networks.
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Chapter 1

Introduction

In recent times, Blockchain [1] has been one of the most sought-after innovation due to

its wide applicability in various domains. Blockchain has been capturing the attention in

industry as well as in academia due to the development of real-world applications [2, 3, 4].

Its applicability has been introduced in fields like internet of things [5], supply chain [6],

health-care [7], education [8], financial markets [2], e-Commerce etc. Not only its sky-

rocketing demand, but also the performance of blockchain is advancing towards delivering

a performance similar to, if not surpassing the centralised systems [9]. However, researches

in blockchain is still in a comparatively embryonic state, and the common people are

unaware of the concepts behind the working of blockchain. Hence, blockchain systems

still has a long way to go before getting adopted into the masses.

On the other hand, the field of Artificial Intelligence and Machine Learning has

gained a lot of traction due to its unprecedented accuracy in various tasks, like medical

research, autonomous vehicle driving, computer vision, path planning, etc. However, in

order to achieve even higher precision and accuracy, huge amounts of data is required.

Sometimes, the data is in itself sensitive(eg. medical data, personal information, etc.) and

hence the authorities are not open to share the data. This has resulted in the development

of distributed deep learning which has been investigated extensively in the recent years.

1.1 Motivation

Distributed deep learning has brought in the idea of privacy-preserving deep learning.

Various models have been employed in the past, among which Federated Learning [10, 11]

is the most popular and a widely adopted system. Federated Learning is a privacy-

preserving, distributed machine learning model developed in 2017, where massive amount

of decentralized datasets can be trained and complementary knowledge can be transferred

1



1. INTRODUCTION

among distributed model trainers. In Federated learning, a coordinating server, also

termed as the parameter server learns a global model by aggregating locally computed

models uploaded by various clients which are trained on their local data [11]. More details

on how a federated learning system performs the model training is discussed in section

2.1.

Despite numerous advantages, FL must guarantee the privacy of data and several

methods like differential privacy have been developed to ensure it. While trained mod-

els are transferred to the server from the clients or vice versa, they are encrypted using

Differential Privacy [12] where noises are added in the gradients that are uploaded, achiev-

ing a trade-off between data privacy and training accuracy. However, Hitaj et.al. [13]

pointed out that differential privacy failed to protect data privacy and demonstrated that

a curious parameter server can learn private data through GAN (Generative Adversarial

Network) learning. Various other researches has been conducted to ensure privacy of the

data transferred in a federated learning setup. Despite these numerous researches, there

are two serious problems that needs to be addressed and have received less attention so

far [14]. The first one is that existing work generally considered privacy threats from

curious parameter server, neglecting the fact that there exists other security threats from

dishonest behaviors in gradient collecting and parameter update that may disrupt the

collaborative training process. The second problem is that in existing schemes clients are

assumed to have enough local data for training and are willing to cooperate which is not

always true in real applications. Several other works have also been conducted to preserve

privacy in the domain of federated learning [15].

To maintain data privacy, recent studies [14, 16] has aimed to use blockchain in

distributed deep learning, mainly focusing on federated learning. These methods aim

to provide data confidentiality and incentive mechanism for parties that are willing to

participate in collaborative training. However, they have employed a single blockchain

network to base their FL model on. However, with recent developments, several author-

ities maintaining data privacy for their training model on individual blockchains may

want to collaboratively train the model with other organizations. An use case of this

might be the case where two medical organizations have their own respective learning

model trained and stored under a blockchain network, but wants to refine their model

using transfer learning or learn a new model using multi-task learning with reference from

another model that was trained under a different blockchain network. The motivation be-

hind such a desire can be to effecitvely use the latent features of data from several sources

and use them to learn a model that can exhibit a higher accuracy. Such a scenario effec-

tively boils down to interoperability of blockchain and training of a neural network in two

2



1.2 Contribution

different chains. In simple words, it is employing a blockchain to train a learning model

partially, and then transferring the“state” of the model to the participating blockchain

where the model is trained till completion.

1.2 Contribution

There are several roadblocks in achieving the above-mentioned idea of cross-training learn-

ing models trained under the hood of two different blockchain networks. Initially, an effec-

tive design of assets need to be carried out that can be shared across multiple blockchain

networks such that it is verifiable. Also, integrity of the various models needs to be

checked. To cope up with these issues, we have proposed a system architecture that aims

at training a model across different blockchain network by transferring appropriate assets

to make the data verifiable. The primary contributions of this work are:

1. We have developed a federated learning architecture that can train a model in a

distributed fashion and update the blockchain ledger after transforming the weights

in the form of assets.

2. We have designed a system architecture to enable cross-chain training of a learning

model. This will enable us to train a learning model partially under one blockchain

network while using the weights to train the same or different model under the

complimentary blockchain network.

3. We have employed a signing methodology that is easily verifiable and can be used

to dictate the authenticity of the transferred assets.

This report in organised as follows:

In Chapter 2, we discuss the background of how a federated learning works and what is

a blockchain. In Chapter 3, we discuss a few previous works based on on this domain

and how our work is different from them. In Chapter 4, we discuss in detail the design

and working of our system architecture, that includes the designing of federated learning

system, integrating it under a blockchain network and enabling the transfer of model

weights across two blockchain networks. In the next chapter, we discuss the evaluation

testbed, consisting of the different datasets, leanring models, hardware setup and metrics

used for evaluation. In Chapter 6, we discuss the evaluation results of the experiments

and finally, the last chapter we discuss the conclusions and the future work in the field of

cross-chain training of learning models.

3



Chapter 2

Background

2.1 Federated Learning

(a) (b)

Figure 2.1: Schematic Diagram of a Federated Learning system where a parameter server

coordinates the training process while various edge devices(web browser, desktops, or mobile

devices)(a) can train the model on their local data and respond back to the parameter server with

the updated model. Figure (b) summarizes the training process in FL setup

Federated Learning, first introduced by Google in 2017 [10] is a technique of dis-

tributed machine learning where a model is trained on multiple decentralized edge servers

on their local data. In such a setup, there exists a central parameter server that coor-

dinates the entire process of model training, while the actual training of the models is

performed on the client devices. Generally, the model is trained whenever there is enough

resources available at the client side, for example, when the client device is connected to

the WiFi, or plugged to the charging point, etc.

A client joins the Federated Learning setup by sending a registration signal to the

parameter server and the latter admits the client. The uniqueness of federated learning

4
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system lies in the fact that not all clients need to be online to participate in the training.

Also, the local data available to the clients can be of non-iid distribution. Thus, whenever

a client is ready to train a model, it triggers the parameter server to send the latest global

model along with any hyperparameters, and then the client refines the model on its local

data. Thus, each client performs their local rounds. After the local training, it sends the

updated gradients back to the parameter server. The parameter server on receiving the

gradients from multiple clients may decide to either aggregate the weights and update the

global model or wait till a threshold number of clients have responded with the updated

local weights. This entire process from the server sending the global model to the clients

to aggregating it to form the latest version of the global model comprises a single global

round. The process of federated learning has been demonstrated in Figure 2.1.

The main difference between federated learning and distributed learning is the as-

sumption of the properties of the local datasets [17]. In distributed learning, the datasets

are assumed to have iid distribution as it originally aims to distribute and parallelize

computation power, where the server distributes the working load to the clients. While

federated learning aims at training on datasets having non-iid distirbution and hence

heterogeneous. Also, the size of datasets can vary among the clients.

Federated Learning can be of two flavours: synchronous or asynchronous. In syn-

chronous federated learning [10, 18], the parameter server waits till a threshold number

of clients responds with the updated gradients. Though it is the most used scheme

and the simpler to implement, it suffers from stragglers. If some clients are slow to re-

spond(straggles), the threshold number might not be reached and hence the timely update

of the global model will be hampered. To tackle this scenario, asynchronous federated

learning [19] was invented where the parameter server has the freedom to update the

global model whenever a client responds with a model. If multiple clients responds with

the updated model within a short time, the parameter server might choose to update them

individually or in a batch. However, this scenario can suffer from stale gradients where a

client might respond with a model that was computed with respect to a stale version of

global model. Researches have been done to alleviate the effect of stale gradients [20, 21].

However, in this project, we have chosen the synchronous version of federated learning

due to its simplicity.

2.2 Blockchain

Blockchain is a decentralized, distributed and public/private ledger that stores transac-

tions and records from various participating parties. It is a peer-to-peer network that

5



2. BACKGROUND

Figure 2.2: Simplistic operation flow of how a blockchain works. Figure courtesy: Blockchain

Architecture Basics: Components, Structure, Benefits & Creation

does not require any central authority to manage the transactions/communications. In

blockchain, few transactions are periodically combined into a single blocks and then

chained into the ledger. The principle design of blockchain makes it immutable, that

is, a block once added to the ledger cannot be tampered with by the parties participat-

ing in it. Thus, blockchain preserves privacy of the data and hence is a useful tool in

many applications. The records in a blockchain that are added to the ledger are verified

and authenticated by a collaborative opinion of the participating parties. Additionally,

in a blockchain, all transactions(entering a block, retrieveing data from a block, delet-

ing a block, etc.) are encrypted and added to the ledger after reaching to a consensus

by special nodes called the miner nodes. Each node/peer in a blockchain network holds

the entire ledger of transactions thus maintaining secured, synchronized and immutable

records. This notion of decentralised security is the principle attraction of blockchain.

Use of blockchain also eliminates the possibility of double spending, that is a value can

be transferred only once and a transaction can be added to the block only once.

In blockchain, blocks hold batches of valid transactions that are cryptographically

hashed and chained into Merkle tree. Each block contains the cryptographic hash of the

previous block and this creates the link between consecutive blocks. Blocks are added

into the ledger by nodes known as miner nodes. They perform special tasks and hence

competes with other miner nodes to win the competition to be eligible to create a new

block. Such special tasks, also called consensus algorithms are different for different

blockchains and can be called as proof-of-work or proof-of-stake. In Figure 2.2, an overall
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2.2 Blockchain

operation flow of how a block is added to a blockchain has been described.

Blockchains can be permissioned or permissionless. Permissionless and public blockchains

allow any user to create a transaction and add a block to the ledger, for example, Bitcoin

and Ethereum. On the other hand, permissioned blockchains like Hyperledger Fabric [22]

and Ripple use an access control layer to govern who can access the blockchain and add

a block to the ledger. In our work, we have used Hyperledger Fabric, a permissioned

open-source blockchain developed by Linux Foundation.

The power of blockchains are enhanced by programs called smart contracts. Smart

contracts are essentially codes that are invoked by client applications external to the

blockchain network. They are intended to automatically execute, thus managing access

and modification to a set of key-value pairs in the state of the transactions. Smart

contract can control and execute actions and events in a blockchain based on certain

conditions. They were introduced primarily to reduce the need of trusted intermediators

and arbitrators.

7



Chapter 3

Related Works

In this section, we present a brief discussion on the various previous works that have

been done on the concept of blockchain, its integration with federated learning as well as

interoperability of blockchain networks.

3.1 Blockchain Technology

The concept of blockchain was first introduced and conceptualized by Satoshi Nakamoto

in 2008 [3] in the form of bitcoin. It is a cryptocurrency that worked using the principle

of a public permissionless blockchain. Since then, blockchain has gained great traction.

Due to its decentralized and distributed nature along with its privacy guarantees, several

institutions have started using blockchain in varied domains. Bitcoin [2, 3] was the first

blockchain technology that was developed which has grown to be a widely-regarded cryp-

tocurrency. There are other public blockchain networks like Ethereum [23] and Litecoin

that enables the use of smart contracts to to automatically execute, control or document

legally relevant events and actions according to the terms of a contract or an agreement.

For enterprises that use blockchains for storing confidential data needs an access control

layer to allow certain actions to be performed only by certain identifiable participants.

For such a scenario, permissioned blockchains like Hyperledger Fabric [22] and Burrow are

quite beneficial. A simplified overview of how a blockchain works has been described in

section 2.2. Various challenges in research of blockchain has been summarized by Belchior

et.al. [24].

8



3.2 Federated Learning using Blockchain

3.2 Federated Learning using Blockchain

Federated Learning was first introduced by Google in 2017 [10] and hence has become an

important research topic. Due to its promises to maintain privacy of user data, it has

been adopted in several industrial applications like GBoard and NVIDIA Clara. Due to

the privacy-preserving nature of the federated learning, recent researches has been con-

ducted to incorporate federated learning using blockchain [14, 25, 16]. The main idea is to

improve the privacy of the data and the system along with maintaining auditability of the

gradients. In simpler words, blockchain stores the gradients/weights of the learned model

via FL setup, thus enhancing security of user data along with minimizing the chances

of tampering of the model learned. OpenMined [26] is an open source community im-

plementing a federated learning architecture based on smart contracts. DeepChain [14]

develops an incentive-based method where the participating nodes are awarded incentives

if they can update the model by learning on their local data. The blockchain network

stores the gradients and the parameter values after the end of each global iteration and

hence extends the chain. Anyone, who wants to use the model for evaluation purposes

can use the model by spending a fixed amount of cryptocurrency. FLChain[16], on similar

grounds, provides incentives and misbehavior deterrence for collective modelling. It pro-

vides a more stable environment by considering each trainer’s contribution and reliability.

Several works have been done that incorporates artificial intelligence with blockchain.

[27] uses blockchain to securely learn and transfer medical data and model while [28]

employs blockchain along with CNN to detect driver’s behavior while driving and securely

transfer the data to the authority. Goel et.al. [25] provides a novel idea to represent a

neural network in a finite blockchain and use it to train the model. A summary of various

challenges and research directions are summarized in the survey paper by Salah et.al. [29].

3.3 Cross-Chain Interoperability

Works listed in the above sections tries to integrate a single blockchain with federated

learning to enable the training of a model. However, an interesting front of research study

is the interoperation of blockchain to transfer assets. Such a methodology would help to

enable transfer learning of a model under a blockchain network with the knowledge from

another model under a different blockchain network. This makes it essential to enable

interoperability of a blockchain. Belchior et. al.[24] provides a survey of various research

studies that has been performed on this domain of interoperability of blockchains. Several

techniques like trusted relays, side-chains, blockchain of blockchains or hashed time lock

9



3. RELATED WORKS

contracts(HTLC) have been explored. Each of them tries to transfer operation flow by

allowing clients of a separate network to download the asset and store them in their own

local ledger. However, most of these techniques focus on public, permissionless blockchain

networks. It is easier to transfer asset within two public blockchains since all clients has

the permission to alter the state of the blockchain and hence can download blocks as well.

On the other hand, Hyperservice [30] aims to achieve interoperation across heterogeneous

blockchains. On a similar front, CollabFed [31] leverages public-private blockchain inter-

operability by allowing the members of the private consortium to participate in the public

blockchain to represent themselves as their own trusted agent. IBM in their studies [32]

uses relay service and several additional smart contracts to verify the document trans-

ferred among permissioned blockchains. Cryptographic signature mechanisms to digitally

sign the documents like Collective Signature [33] ensures the verifiability.

However, we can see that though [32] reaches close to our prime objective in this

project, yet it does not try to integrate the interoperability system with learning a model

via federated learning. Thus, our objective is different from the above research works in

the way we try to optimize the interoperability architecture between two permissioned

blockchains to train a learning model collectively after transfer of assets.

10



Chapter 4

System Description

Transferring of assets across blockchain networks involves a collection of tasks that need

to be performed. However, the first requirement is to decide the category of blockchain

networks. Since the primary use case of our system involves the learning of models between

two or more organizations via the sharing of assets, they need to maintain privacy of their

blockchain as well as the transfer methodology. Hence, we have considered the blockchain

networks to be permissioned network. Thus, only the clients given the permission to

access the ledger will be able to do it. On the other hand, permissionless blockchain

network would imply that the learning model can be easily accessed by anyone who has

the knowledge of the address of the model, that might result in breach of security.

Our overall system architecture contains several components, involving the learning

of the model to the storage of the assets in a blockchain network, to the cross-chain

transfer methodology applied. We shall demonstrate each working block of our system in

detail.

4.1 Federated Learning System

In our system design, we have employed federated learning to train the learning model. In

a nutshell, it involves a parameter server, that coordinates the entire learning process along

with various clients that train the model using local data and reply the parameter server

with the computed weights. The server then aggregates the received weights according to

an aggregation strategy and updates its database with the new aggregated model. After

the aggregation, the server then sends the updated model to the clients and the process

continues.

However, simple it may look, but it involves several subtleties and nuances. The

foremost consideration is about whether to use a synchronous federated learning or an

11



4. SYSTEM DESCRIPTION

asynchronous one. Although asynchronous federated learning has several advantages over

its counterpart in terms of earlier convergence or straggling clients, synchronous provides

greater quality of update in each round and is much more easier and comprehendable.

Hence, we have used synchronous version of federated learning in our implementation.

Synchronous version progresses in rounds, where at each round, the current model at the

server is sent to all the clients(or a subset), and during aggregation, the client models

are aggregated only when all the clients(or a subset) replies. Until all the clients reply,

the server remains blocked. Thus, a perceivable disadvantage that might come to effect

is when some clients are very slow to respond. However, we shall ignore the delay in the

clients in our experimentation strategy.

4.1.1 Server Components

Clients

Updater

MongoDB - 
Database

Kafka -
Messaging 

Infrastructure

Sender

Figure 4.1: Figure shows a simplified design of our Federated Learning architecture. It has two

server components, sender and updater communicating within themselves and with the clients

through Kafka, and connected to a MongoDB database.

Figure 4.1 shows the design architecture of the federated learning system. It involves

a server, several clients, a messaging infrastructure and a database to store different

versions of the models, updates and their metrics. The elementary sub-components of the

12



4.1 Federated Learning System

server are:

• Sender: This component is responsible for selecting a subset of clients at the start

of each round, and the updated model aggregated at the server is sent to those set

of the clients. There are several theories on what can be the optimal cardinality

of the set of clients that can be chosen by the sender. However, we have kept our

model simple and fast and will send the model to all the clients.

• Updater: Updater is responsible for the aggregation of the received models at

the server side. When the models are received by the client, it inserts them in the

database and when a threshold number of pending updates are reached, it aggregates

them. We have used Federated Averaging [10] as the algorithm for aggregation.

After the aggregation, updater updates the global model, changes its version, and

stops if a stopping criteria has been reached.

In addition to these components, we also maintain a Coordinator, that initializes the

learning model and starts each round.

save_model

send_update

send_model

Updates sent

Train

round++

Sender Updater Kafka ClientMongoDB

publish current 
model to all clients

get_models_and_aggregate

save_global_model

publish current 
model to all clients

send_model

get_current_model

get_current_model

Figure 4.2: Sequence Diagram showing the operations and Control flow in our Federated Learn-

ing architecture.

For the communication between the clients and the server, our goal is to use some

kind of an event streaming platform that can scale up as well when required. Thus, for

13



4. SYSTEM DESCRIPTION

this purpose we have used Kafka which can be efficiently used in a publisher-subscriber

model where the server can publish the updated model and the client can subscribe

the messaging from it. A streaming messaging infrastructure is favourable since some

straggling clients might not be up-to-date with the current updated model and hence the

stream queue that the client has subscribed to might have multiple models. The client

can then choose the latest model from the queue and train the local model based on the

weights.

The updates from the clients as well as the metrics and the global model are stored

in a database on the server side. We have used MongoDB as the database which is a

popular NoSQL database that stores records as collections(similar to tables in SQL). The

sequence of control flow is illustrated in Figure 4.2

Algorithm 1 Federated Averaging(). The K clients indexed by k; B: local mini-batch

size, C: global batch size, E: local epochs, and η: learning rate.

1: procedure ServerUpdate

2: Initialize w0

3: for each round t = 1, 2, . . . do

4: m← max(C.K, 1)

5: St ← set of m clients

6: for k in St do

7: wk
t+1 ← ClientUpdate(k, wt)

8: end for

9: wt+1 ← ΣK
k=1

nk

n
wk

t+1

10: end for

11: end procedure

12: procedure ClientUpdate(k, w)

13: B ← split dataset in client k into batches of size B

14: for each local epoch i ∈ E do

15: for batch b ∈ B do

16: w ← w − η∇l(w; b)

17: end for

18: end for

19: Return: w

20: end procedure
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4.2 Blockchain Integration with FL

4.1.2 Federated Averaging

To aggregate the updated local models received from the clients, we have used the Fed-

erated Averaging algorithm as has been described by McMahan et.al. [10]. Each client

replies with the updated local model as well as the number of data points on which the

model was trained at the client side. The server then updates its local model weights by

an weighted average of the client model weights, with weights being the number of data

points at the client. The principle idea of such an aggregation strategy revolves around

the fact that more importance should be given to the model of the clients that trained on

larger data points. Federated Averaging algorithm has been described in Algorithm 1.

4.2 Blockchain Integration with FL

Global
Models

Kafka

SenderClient uploading
local models

Updater

Clients

Hyperledger

Assets

Figure 4.3: Figure illustrates the working procedure of uploading the learning models in the

form of asset from a federated network to the blockchain network.

Next in our pipeline is the integration of Blockchain within the Federated Learning

network. Weng et. al. [14] developed a blockchain-based incentive mechanism and cryp-

tographic primitives for privacy-preserving distributed deep learning. We employ similar

techniques where the clients and the parameter server can store the data in a common

blockchain. We have used a permissioned blockchain where all the clients and the server

have the permission to enter and access the assets stored in it. For our purposes, we have

used Hyperledger Fabric [22] which is a widely used permissioned blockchain, that
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4. SYSTEM DESCRIPTION

supports the usage of smart contracts and distributed ledger.

Since every client has the permission to access the blockchain network, it alleviates

the concern of privacy if the client can enter an asset to the blockchain containing the data

about the model weights it learned with some additional parameters. The server can then

pull the required assets(probably by round number) and aggregate them using Federated

Averaging. Figure 4.3 shows the coalesced architecture that includes blockchain along

with the federated learning system. As illustrated in the diagram, along with the federated

learning procedure, aggregated global model is uploaded to the blockchain network which

is stored in the distributed ledger. Along with the global models, clients can upload their

model as well to the blockchain, which will be stored in the same ledger, but have a

different ID and an indicator that the asset was formed from the local model of a client.

Block

Asset ID:                        string
 

Model Version:               int
 

Fragment Number:         int
 

Node:                             string
                                     ("server"/"client")
 

Weights:                         byte[]
 

Hyperparameter:
        Epoch:                   int
        Batch Size:            int
        Loss Function:       string
 

Dataset:
        Dataset ID:            int
        Dataset Name:      string
        Train Samples:      int
        Test Samples:       int
        Validation Split:      float   
 

Metrics:
        Train Loss:            float
        Train Accuracy:     float
        Test Loss:              float
        Test Accuracy:      float

Figure 4.4: Each block that gets appended to the blockchain contains the information that needs

to be shared across multiple blockchains to maintain verifiability.

The assets that are stored in the blockchain are essentially the training state of

the neural network after each round of federated learning. The assets need to contain

enough information so that the integrity of the content stored can be verified. Since

identical assets are going to be transferred across different blockchain networks, sufficient

information are maintained to check the authenticity of the asset. Thus, apart from the

model weights/gradients, hyperparameters, dataset characteristics, model architecture

and several metrics are stored. Figure 4.4 shows the structure of the asset. Hence each

passing round, the chain network is extended by adding the updated model parameters

by the client as well as the server.

For different learning models, the size of the asset will be different since the number
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4.3 Cross-Chain Transfer

of parameters for each model are of varying dimensions. However, hyperledger fabric

allows a limited size of asset to be stored in the ledger. Thus, we segment an asset into

various fragments of 800 kB each. Thus, for a larger asset, we have greater number of

fragments. Since each asset must be stored with a unique ID, thus each fragment will be

stored with the ID <asset ID, fragment Number>.

4.3 Cross-Chain Transfer

Transfer

Train a Learning 
Model in FL Setup

Represent the model 
as an asset

Store the asset into 
the ledger

Asset

Request 
for transfer

Yes

Retrieve 
the asset

No

Sign the asset

Receive the Asset

Verify the 
Asset

Store the Asset in its 
local ledger

Asset

Learn Local Model 
with the Transferred 

Asset

Figure 4.5: Overall Flow of Operation Control in our System

From the previous sections, we have an initial architecture of a blockchain network

integrated with Federated Learning system that can be used to train a learning model and

store the state of the model as an asset in its ledger. However, our objective is to transfer

the stored state between multiple blockchain networks. The primary objective of our work

in depicted by the flowchart in Figure 4.5. It is easy to achieve this feat in permissionless

blockchain since a node outside the same blockchain network can access the ledger and

retrieve the state of the learning model. However, this problem gets exceedingly difficult

when both the participating blockchain networks are permissioned. In such a scenario,

nodes from a different blockchain network (Blockchain B) does not have an access to the

ledger of Blockchain A and hence must trust on a node in the network of Blockchain A

node to transfer the asset and provide with the information it wants.
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4. SYSTEM DESCRIPTION

Let blockchain Aand B be two permissioned blockchains, and nodes nA and nB be

one of the participating nodes in A and B respectively. Node nB can ask to node nA to

transfer the assets store in Blockchain A, that is, a state of the learning model. Now, it is

the responsibility of nA to transfer the asset to nB such that nB can verify the integrity

and the authenticity of the asset. Inspired by the design presented by Abebe et. al.[32],

we have followed a relay-based asset transfer schema as shown in Figure 4.6.

COMMUNICATION

BLOCKCHAIN NETWORK B

LEDGERS

PEER NETWORK

CONSENSUS

MAKE REQUEST

FETCH DATA

SIGNING 
PROTOCOL

VERIFICATION 
PROTOCOL

APPLICATION

SMART
CONTRACT

APPLICATION

VERIFICATION 
PROTOCOLMAKE REQUEST

FETCH DATA

SIGNING 
PROTOCOL

LEDGERS

PEER NETWORK

CONSENSUS

SMART
CONTRACT

1

2 3

4

5

6

78

9

BLOCKCHAIN NETWORK A

Figure 4.6: Control Flow for Cross-Chain Interoperation of Assets (denoted by green numbered

arrows) between two permissioned Blockchain networks.

We have used a relay service to facilitate the transfer of assets between the two

networks. A separate relay component has been used so that there is no need to modify the

network protocols and node implementations. Thus, each of the two blockchain networks

have a relay service of their own that is responsible for making a transfer request to the

other blockchain, or serve the request of the asking blockchain. Whenever, a transfer

of assets is deemed necessary, any client (say, node nB) can ask the relay service which

can then forward the request to the relay service of the destination blockchain. Each

relay service can run a smart contract to check the configuration of the foreign network

or whether they are trusted, which we exclude however. Similarly, since we are not

maintaining any confidential information in the form of an asset in the blockchain, we

don’t run a validity check on whether the queried asset can be transferred or not. However,

such a check is necessary if confidential informations are stored in the asset. After the

destination relay service has retrieved the accurate asset, it is then signed by all the clients

in that network and then transferred to the source blockchain. It is the responsibility of

the source blockchain to verify the authenticity of the incoming data before writing to its

own local ledger. The steps involved in the message flow required for the interoperability

of blockchain are formulated as below:
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4.3 Cross-Chain Transfer

1. The client application within blockchain network B requests to its local relay service

for the required data by specifying the unique identification of blockchain A and the

asset to invoke, that is, whether it wants the latest stored global model or a stale

one, along with any arguments. Specifically, the make request() handler of the local

relay service is called by the client application.

2. The relay service then performs finds the destination address of the relay service

associated with blockchain A.

3. After retrieving the destination address, the relay service of blockchain B serializes

the message and communicates to the destination relay via HTTP POST request,

along with the parameters sent by the client application. Specifically, it calls the

fetch data() handler of the destination relay service.

4. On receiving a POST request on the fetch data() handler, the relay service of

blockchain A then deserializes the message and decodes the arguments in the mes-

sage. Based on the arguments, it will retrieve the specified asset.

5. Next, the relay service retrieves the appropriate asset stored in the distributed ledger

via evaluating a transaction. Precisely, the relay service first extracts the ID of the

assets stored in the ledger along with the iteration number that the model weight

corresponds to. It then finds which asset the relay service of blockchain A requested

for and retrieves the asset for only that particular ID. We have established earlier

that the asset is stored in the ledger in chunks with corresponding fragment number

as well. Thus, as we retrieve each chunk of the specified asset, we will concatenate

them to form a single asset, which will then be transferred.

6. The asset is then signed by the peers following the CoSi protocol (Section 4.3.2) so

that the asset can be verified for its authenticity at the receiving end. The signature

from each peer collectively forms the proof satisfying the verification policy

7. Relay service of blockchain A then serializes the HTTP response and sends it to the

relay service of blockchain B, thus transferring the asset.

8. Relay service at blockchain B then invokes the Verification protocol and verifies

whether the received data is authentic or not.

9. Finally, the relay service updates the transferred asset to the local ledger and gives

a response back to the client application that invoked it earlier..
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4. SYSTEM DESCRIPTION

We have not separated the control flow from the data flow in our architectural design,

that is, we will be transferring the assets through the same channel from where the control

message(request message) was sent. The main reason is because we are involved with only

two blockchain networks communicating with each other. Thus, we experience no delays

or congestion with having the same control and data channel. However, with larger scale

blockchain networks, where multiple relay service can communicate with each other, it

would be beneficial to separate out the two channels to avoid congestion and increase

responsiveness.

It is to be noted that if we follow the above-mentioned steps, it is evident that we

need to decide upon the amount of information in the form of a single or multiple assets

should be transferred so that verification of the content of the transferred data can be

carried out. Similarly, some sort of signing the asset should also be performed which will

enable the authentication of the network or the clients on the receiving side. Thus, we

will discuss these points in details.

4.3.1 Asset Design

For verification of the transferred asset, that implicitly represents a state of the learning

model, transferring just the weights shall not suffice. The receiving nodes of the blockchain

should also be able to verify whether the weights are truly learned or was there an attack

in the middle or untrusted source sent the weights that redistributed the values of the

weights. However, in an asset that we store, we not only store the weights, but also

include which model it was on, which dataset was used to generate the weights and what

are the metrics achieved by employing the same weights. Thus, we claim that the asset

corresponding to the global model is enough to verify the integrity of the model. Thus,

if we intend to transfer the weights and use it in a transfer learning objective, we shall

design the asset that needs to be transferred in the following sub section.

Transfer Learning Objective

Transfer Learning is a branch of machine learning where we use the knowledge gained

by some task to perform a related task. As shown in Figure 4.7, Network A has trained

on its own specific task using its own input. The parameters and weights of the model

are then transferred to Network B, which can then refine the model based on their own

input or change a few of the output layers depending on the task they solve. In layman

terms, transfer learning helps to give an intelligent and task-specific initialization of the

parameters.
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4.3 Cross-Chain Transfer

Figure 4.7: Principle of Transfer Learning

In our scenario, the first network maintaining Blockchain A performs a Federated

Learning task using a learning model. It has its trained weights stored in the blockchain

in the form of assets, thus preserving the weights calculated in various rounds. When a

transfer of weights in the form of asset is requested, only the final asset storing the weights

of the global model in the latest round is sufficient to transfer. The asset contains various

auxillary informations including the values of the parameters, loss function, loss value, test

accuracy value and other metrics(if needed), and the dataset characteristics used while

evaluating the model (as described in Figure 4.4). Verification of the authenticity of the

learning model based on the transferred attributes can then be done by the relay service

on the receiving end. Thus, it can then use the complete set of transferred parameters or

a partial set of parameters as a starting initialization of a new model and can train their

own learning model via Blockchain B.

4.3.2 Collective Signing

To reach a consensus in a blockchain network during the transfer of assets, we use the

methodology of Collective Signing (CoSi) as presented by Syta et.al. [33]. It is a scalable

collective signing procedure that allows the witnesses to collectively sign a transaction

within a few seconds.

In our model of the system, we use the Collective Signing procedure whenever there

is a need for the transfer of assets. This would ensure that the receiving end can perform

verification of the received data and confirm the authenticity. The relay service is respon-

sible to initiate the Cosigning procedure. The relay service defines the number of witness

cosigners and defines the document that need to be signed, which in our system modelling

is the assets that are transferred. Witness cosigners in the figure are the nodes(clients)
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Public Keys

Relay Service

Witness Cosigners

Private Keys

Signed 
Asset

Figure 4.8: Collective Signing Architecture.

that participate in collectively signing the records. Witnesses also checks the syntactic

and semantic correctness of the documents that the authority requests them to sign. This

is needed to prevent any malicious intentions from any requesting node to rewrite his-

tory. Numerous digital signature schemes that support efficient public key and signature

aggregation can be employed with CoSi. Some of the common examples are Schnorr

signatures[34], multisignatures[35] and Boneh-Lynn-Shacham (BLS) [36] cryptosystem.

In our CoSi protocol, we have used BLS signatures where the key is generated for all

the witness cosigners, where a signed entity is shared with the receiving relay service. On

receiving the transferred assets along with the signed entity, the relay service will then

verify the authenticity of the signed entity using the secret keys and then accept/reject the

received weights according to the verification outcome. After the verification is successful,

the relay service can then either enter the received asset directly to its blockchain or a

node can be given the responsibility to perform the task.

However, there is an implicit assumption that the identity and hence the secret keys

need to be shared beforehand among the two blockchain networks. This would facilitate

the verification of the signed entity at either ends. In our system modelling, we have taken

the assumption that the keys generated for BLS signature is shared beforehand. However,

Ghosh et.al. [37] in their recent work has demonstrated a method where the identity plane

is kept separate from the data plane. The identity and the configuration files are shared

through a trusted channel beforehand in the identity plane, which is run on top of the

data plane that is responsible for the transfer of assets between two blockchain networks.
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Chapter 5

Evaluation Testbed

This chapter will abridge the evaluation of our end-to-end system. The evaluation strategy

has three components, namely, evaluating the accuracy of the learning model trained

using federated learning, evaluation of the overheads for entering the state of the learning

model in the form of an asset into the blockchain, and finally evaluating the overheads

for a cross-chain transfer of assets. First, we shall give a brief description of the hardware

system employed, followedby the description of the datasets on which we have evaluated

our learning model, and finally discuss about the metrics.

5.1 Hardware Setup

We have used AWS EC2 t2.2xlarge instances for running our federated learning system

and training our learning model. We have used several such instances acting as a client

while one instance being hosted as a FL server. Hyperledger Fabric network is run on the

same instance, that is, the EC2 instance hosting the FL server houses the fabric peers

and the orderers.

AWS EC2 t2.2xlarge instances have octacore CPU with 32 GB memory running

on 3GHz Intel Xeon processors. We have used HTTP request-response protocol to run a

golang application developed for entering the asset in the blockchain, and to make request

to the relay service to initiate the transfer of assets.

5.2 Dataset

For the Federated Learning via blockchain A, we have used Cifar-10 dataset. The dataset

has 50k training images and 10k test images. The image sizes are 32× 32 and are divided
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5. EVALUATION TESTBED

into 10 classes, each class having equal number of training as well as testing images. The

datasets were cleaned and then sampled into n equal sets, where n is the number of clients

involved in the federated learning model.

The complete training dataset was identically and independently distributed among

the clients, so that each client had equal number of images from each class. This implies

that the dataset assigned to each client had almost identical distribution, leading to a

much smoother convergence. It is to be noted that Federated Learning can handle non-

iid distribution of dataset as well. The client then used their respective datasets for

training with a train-test split of 0.1. Thus, for each client, we have maintained a training

set and a testing/validation set.

For the final part of evaluation where the effectiveness of the transferred weights is

verified, we perform a transfer learning task of image classification with varying models.

We use Cifar-100 dataset. Similar to Cifar-10, this dataset has 50k training images and

10k testing image, where each image is of 32×32 size, and labelled with a coarse category

and a fine subcategory. There are 20 coarse categories and 100 fine subcategories, however,

we use the coarse categories as our labels while evaluating. For the transfer learning task,

we have performed a central learning in place of federated learning since this was not

our principal goal and was performed only to verify the effectiveness of the transferred

weights.

5.3 Learning Models

For the federated learning task, we have evaluated our dataset on two models. We give

their description below.

32 x 32 Image

Output Class 
Probabilities

Conv2D_32 Conv2D_32 MaxPool2D Conv2D_64 Conv2D_64 Conv2D_32MaxPool2D

Conv2D_128Conv2D_128Softmax Dense_256 MaxPool2D

Figure 5.1: Architectural Overview of the Simple CNN Model

24



5.3 Learning Models

5.3.1 Simple CNN

Simple CNN is a 6-layered CNN model followed by a feed-forward dense hidden unit and

an output layer. The structure of the CNN model is Figure 5.1. Each convolution layer

has a 3 × 3 kernel with ‘same’ padding. Number of convolution filters increases with

gradually, with occasional Maxpooling layer and a dropout. All the layers have the same

‘Relu’ activation function. The total number of parameters for SimpleCNN is 814, 122.

5.3.2 Compressed VGG

8

Conv2D_8

fire1

MaxPool2D

fire2

MaxPool2D
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MaxPool2D

fire5

fire6
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MaxPool2D Dense_512

Dense_512

Softmax

32

64

128

128

128
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128

32 x 32 Image

Output Class 
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Figure 5.2: Micro-architecture of the com-

pressed VGG model, involving Fire modules

This is a shortened and compressed ver-

sion of the VGG11 model. The VGG mod-

ule has a total of 7 “convolution” layers

with occasional Maxpooling, having a to-

tal of 171,682 parameters. However, an

interesting feature in our model is that

we have replaced the “convolution” lay-

ers with Fire module, as illustrated in

Figure 5.2. Inspired by the architecture

of SqueezeNet [38], we have designed our

VGG with Fire module so that it has fewer

parameters compared to the original VGG.

This would facilitate the storage of the as-

set in the ledger with significant ease, as

well as would take less time to transfer.

However, care was taken that it did not

result in accuracy being decreased by a sig-

nificant amount.

The overall structure of Compressed

VGG is described in Figure 5.2. In place

of a convolution filter that takes a hinput ×
winput × cinput dimension input and pro-

duces a houtput×woutput×coutput dimension output, we have used Fire module that performs

similar operations, but using fewer parameters. The main idea of Fire module is to replace

a 3× 3 filter with several 1× 1 filters, which is called the squeeze layer. The output from

the squeeze layer is then passed to the expand layer, which contains 1× 1 as well as 3× 3

filters, as illustrated in Figure 5.3. The output from the filters in expand layer is then

25
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Figure 5.3: Micro-architectural view of the Fire module, showing the organization of 1× 1 and

3× 3 convolution filters. Figure credits: [38]

concatenated together to form the output. This strategy downsamples the network and

reduces the number of input channels to the 3× 3 convolution filters.

For evaluating the transfer overheads, along with the above two models, we have

computed the statistics on MobileNet-v2 as well as ResNet-18. These two models are

closer to the practical models with larger number of parameters and hence would give

an understanding of the expenses of transferring assets in a practical scenario involving

several organization.

5.4 Metrics

5.4.1 Model Performance Metrics

For evaluating the performance of the learning models, we have primarily used Accuracy

and Loss value, the two most common metric. In the federated learning task, we have

computed accuracy metrics and loss values of varying types depending on the execution

point where we have checkpointed them. These are:

• Pre-Test: Evaluation of Global Model on the global test dataset

• Pre-Val: Evaluation of Global Model on each client test dataset and averaged over

clients

• Post-Test: Evaluation of Client Models on the global test dataset

• Post-Val: Evaluation of Client Models on their own local test dataset and averaged

over clients
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5.5 Other Hyperparameters

For the transfer learning task, we compute the usual training loss and accuracy along

with validation loss and accuracy, which we will present in our evaluation section.

5.4.2 Transfer Overhead Metrics

In order to enable the transfer of assets, which in our case are the weights, from one

blockchain network to the other, we would first need to enter the assets into the blockchain

network from the federated learning setup. This would require an overhead time for asset

creation and asset entering sub-tasks. This would differ for various models since each

model weights are of varying sizes and hence would require varying time for entering

them into the blockchain network.

For the transfer of assets, the overheads are to retrieve the relevant asset that needs

to be transferred from the distributed ledger, along with the signing overhead. On the

receiving side, the relay service performs the verification which is included in the transfer

overhead as well, which we report.

5.5 Other Hyperparameters

Since we are using Synchronous federated learning, we will be having a versioning scheme,

where the version of the global model is updated after every global round. Each global

round includes 2 local epochs, that is, the clients will run the model on their local dataset

for 2 epochs.

For the model training, we have used Sparse Categorical Cross-Entropy as the loss

and Adam Optimizer with a learning rate of 0.001.
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Chapter 6

Evaluation

This chapter discusses the results of the evaluation carried out over the duration of the

project. The chapter is organised as follows:

1. Evaluation of the learning models trained via synchronous Federated Learning sys-

tem.

2. Analysis of the overheads incurred for storing the model weights in the form of assets

transferring them.

3. Evaluation of the effectiveness of the transfer of weights.

6.1 Performance of Federated Learning System

The first set of experiments were performed to judge the performance of the learning

model that was trained via the designed Federated Learning. Such a evaluation would

serve two-fold purpose, first is the validity of the Federated Learning system, and second

is to have an idea as to which of the models described in the previous section would be a

good candidate for the transfer learning, and would be beneficial in terms of transferring

the weights. We have evaluated the learning models on the cifar-10 dataset through a

server-client system having various clients.

6.1.1 Small Scale - 10 Clients

In these set of experiments, we will demonstrate the results where 10 clients were used

for training in the Federated Learning setup. For the SimpleCNN model, we have used a

batch size of 32, while for the Compressed VGG model, we have employed a batch size of

16.
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We first present the plots of accuracy and loss for both the models against the version

numbers. We will report the Pre-Test metrics in Figure 6.1.

(a) (b)

Figure 6.1: Comparing the variation of pre-test accuracy and loss value of SimpleCNN and

CompressedVGG against version numbers. 10 clients were used to train the model in an FL

setup.

We see in the above diagram that SimpleCNN has greater accuracy and lower loss

value than the CompressedVGG model, which is explainable since SimpleCNN has more

number of parameters than CompressedVGG and hence can capture more complex rela-

tionships in the dataset. It is to be noted that the version number is incremented after

the clients have replied with their corresponding updates and they are aggregated by the

Updater. Thus, within each version update, each clients have run 2 epochs of training.

We shall discuss the time it takes to update from one version to the other and compare

with the large scale experiments in Sub-section 6.1.3.

In Figure 6.2, we report all the four metrics outlined in Section 5.4.1 for accuracy

for both the models. We see that in both the plots, Pre-Test accuracy is higher than

(a) Learning Model: SimpleCNN (b) Learning Model: Compressed VGG

Figure 6.2: Accuracy metrics for both models against version numbers. 10 clients trained the

model in an FL setup.
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Post-Test accuracy, that is, the accuracy of the aggregated global models surpasses that

of the trained local models, which means that aggregation of the weights indeed results

in a better learning of the model. Aggregation also provides a regularizing effect, since

no client model gets overfitted on their local dataset.

6.1.2 Large Scale - 40 Clients

In this set of experiments(Figure 6.3), we demonstrate similar results as above where 40

clients were used for training. Batch sizes and the evaluation metric are similar as on

before.

(a) (b)

Figure 6.3: Comparing the variation of pre-test accuracy and loss value of SimpleCNN and

CompressedVGG against version numbers. 40 clients were used to train the model in an FL

setup.

(a) Learning Model: SimpleCNN (b) Learning Model: Compressed VGG

Figure 6.4: Accuracy metrics for both models against version numbers. 40 clients trained the

model in an FL setup.

Similar to the previous result, we see that SimpleCNN beats CompressedVGG in

terms of both accuracy and loss. The explanation remains similar as of above. However,
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we will notice that the value of accuracy reached is lower than the value reached in the

previous experiment. We shall elicit on this in the next sub-section. In Figure 6.4, we

report the various accuracy metrics for both the learning models. We again see that Pre-

Test metric surpasses the Post-Test metric, which again proves that aggregation creates

a regularizing effect, thus increasing the efficacy of the model.

6.1.3 Comparison

We have seen how the two models behave when they are experimented with a set number

of clients in the above two results. However, in this section, we shall elicit how the two

results compare against each other. The comparison can be based on two varying reasons,

namely, whether the accuracy increases by training on a larger set of clients, and whether

the model gets trained faster with increasing the number of clients.

(a) Accuracy Plot for SimpleCNN (b) Loss Plot for SimpleCNN

(c) Accuracy Plot for CompressedVGG (d) Loss Plot for CompressedVGG

Figure 6.5: Figure shows the comparison of Federated Learning setup for different number of

clients.

In Figure 6.5, we plot the value of pre-test accuracy and loss against the version

numbers for FL setup with 10 and 40 clients. We see that with increase in number

of clients, the value of accuracy drops at a specific version, which is true for both the

models. This is because with an increase in the number of clients, each client has a lesser
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amount of local cifar-10 dataset. Hence, the local model trained on the dataset overfits,

this lowering the efficacy. With 10 clients only, each client has a total of 5000 images

compared to having 1250 images only when 40 clients were trained.

(a) Accuracy Plot for SimpleCNN (b) Loss Plot for SimpleCNN

(c) Accuracy Plot for CompressedVGG (d) Loss Plot for CompressedVGG

Figure 6.6: Figure shows the comparison of Federated Learning setup for different number of

clients against time, that is, how long does it take to reach a certain accuracy when the nunmber

of clients are changed

Table 6.1: Average global round time for federated learning of various models when

different number of clients were used for training

Learning Model 10 Clients 40 Clients

CompressedVGG 3 min 4 sec 2 min 50 sec

SimpleCNN 4 min 39 sec 3 min 23 sec

In Figure 6.6, we plot the accuracy and loss of the two learning models against time.

We see that to reach the same accuracy, learning with 10 clients makes it faster than

learning with 40 clients. This is primarily because of the same reason as stated above,

that is, with increasing clients, each client gets a lower amount of dataset for training the

local model. Hence, the quality of the model trained gets compromised. However, from
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table 6.1, we see that the average global round duration for both the models is lower when

40 clients are used to train. This, similarly, can be reasoned that with lower amount of

dataset, it will be fast to complete an epoch and hence takes an overall lower average

global round time.

6.2 Analysis of Transfer Overheads

From the previous section, we found out that the learning model was trained via the

Federated Learning setup. We also deduced the better of the two networks that we had

experimented with. Next in our pipeline, we need to set our hyperledger network and

enter the weights that were calculated into the ledger via the form of assets, and then

retrieve them from the ledger when a transfer is requested. Apart from the models that we

have evaluated in the previous section, we shall also be testing the overheads on various

other models, that are used more in practical scenarios.

6.2.1 Entering Asset

Table 6.2 shows the overhead required to enter the weights in the form of assets into the

ledger. The values that we have recorded are averaged across multiple runs.

Table 6.2: Table showing the overhead for entering the asset into Hyperledger

Learning Model # parameters
Asset Size

(MB)
# chunks

Asset Entry Time

(sec)

Compressed VGG 171,682 4.0 5 1.148

Simple CNN 814,122 19.5 24 5.527

MobileNet-v2 3,239,114 67.3 84 17.869

ResNet-18 11,192,019 232.1 290 63.079

We see that with an increase in the model size, that is, with an increase in the number

of parameters in the model, the asset size and the asset entry time scales up linearly as

well, which was expected. However, it is to be noted that even for an asset of size 232 MB

(for a ResNet-18 model), the time taken by the FL server to update it in the blockchain

is around 1 minute. Hence, it shows that the asset will be entered into the ledger before

the global model is updated again, thus avoiding a contention in the updating channel.
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6.2.2 Transferring Asset

Whenever a request for the transfer of assets arrives at a relay service, it must first retrieve

the requested asset from the ledger and defragment it, act as an authority to ordrer the

peers to digitally sign it using BLS signatures, and finally reply with the asset. On the

receiving end, the relay service must verify the signature first on receiving the asset before

committing the transferred asset to its local ledger. In table 6.3, we illustrate the timing

overhead incurred at each step. Retrieval Time refers to the amount of time in seconds

required to execute Step 5 defined in Section 4.3.

Table 6.3: Table showing the overhead for transferring the requested asset across two

blockchain networks

Learning Model
Asset Size

(MB)

Retrieval Time

(sec)

CoSi Time

(sec)

Verification Time

(sec)

Compressed VGG 4.0 0.404 0.847 0.871

SimpleCNN 19.5 2.261 5.241 6.017

MobileNet-v2 67.3 6.584 18.586 19.844

ResNet-18 232.1 22.051 110.460 154.705

As can be inferred from the table, transfer time of the assets steadily increases with

increasing model complexity. However, unlike the asset entering overhead, the transfer

overhead scales slightly faster than linear, as is evident from the increase in CoSi Time and

Verification Time for ResNet-18. In the experiment above, we have transferred the asset

via HTTP POST request-response mechanism. We have assumed a constant sufficient

bandwidth and hence have not reported the statistics for the same.

As we have already mentioned, with an increase in the number of transfer requests

from various blockchains, a single relay service and a single channel for both control and

data flow can become the bottleneck. We see from table 6.3 that ResNet-18 takes a total

time of around 4 min 47 sec apart from the transfer time. Out of this, more than 2

minutes of time is taken for retrieving and sigining the asset before the transfer. Hence,

if multiple relay service of some blockchain networks start requesting for the asset, the

source blockchain can become a bottleneck while trying to attend all the queries. In such

a scenario, a relay service can spawn multiple process where each process is responsible

to handle a request for one such transfer request. Additionally, maintaining the same

control and data channel for all the connecting blockchains shall not be optimal from a

scalability point of view. We can separate out the control flow from the data flow, or in
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other words, use an FTP channel for transferring the assets. The transfer of assets can

take place via a different channel from which the request arrived.

6.3 Evaluating Models via Transfer Learning

Finally, after transferring of the assets from one blockchain network to the other and

verifying the authenticity of the transferred asset, we can use the weights to train a learn-

ing model on possibly, a different dataset. We will experiment the efficacy of transferred

weights via the task of transfer learning. As already point out in a previous section, that

we will be training a model on Cifar-100 dataset with data labels as the coarse label.

We will first compute the effect of using the transferred weights as an initialization

of the model, which we have taken to be SimpleCNN. We shall also use the baseline where

SimpleCNN was trained from scratch.

(a) (b)

Figure 6.7: Accuracy and Loss(Training and Testing) of SimpleCNN on cifar-100 dataset

trained from scratch as well as initializing the model with the transferred weights.

From Figure 6.7, we see that the results of training and testing accuracy of Sim-

pleCNN on cifar-100 dataset resonates with the performance of SimpleCNN on cifar-10

dataset. As we have seen in sub section 6.1, SimpleCNN performed better when trained in

an FL setup with 10 clients than in a setup with 40 clients. Hence, the quality of weights

transferred remains superior as well, also establishing the correctness of the weights trans-

ferred. Nonetheless, model learnt with the transferred weights performed better than the

model learning from scratch, which confirms the efficacy of the learning model.

We have also tested the transfer learning task on a different model but a structure

inspired by SimpleCNN. This was done to ensure that we can use the weights as an

initialization for a few parts of the learning model. Effectively, we added 3 convolution
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layers of 256 filters each on the top of SimpleCNN followed by a max-pooling layer. Each

of the convolution layers had a 3× 3 kernel. Finally, a dense layer of 512 units was added

which was followed by the output layer. Let us call this model TransferCNN for discussion

in the next few paragraphs.

(a) (b)

Figure 6.8: Accuracy and Loss(Training and Testing) of TransferCNN on cifar-100 dataset

trained from scratch as well as initializing the model with the transferred weights.

On a similar note, we observe in Figure 6.8 that the model having initialization with

the weights transferred from the FL setup with 10 clients worked better than the rest.

This, the aforementioned experiments cement the validity of the weights transferred and

tries to explain the results.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In summary, we have developed an architecture that can enable the cross-chain training

of a neural network by exploiting the idea of interoperability between two permissioned

blockchain. From the discussions and extensive experiments performed above, several

conclusions have surfaced which are as follows:

1. We have developed a scalable federated learning system that can be deployed on

multiple machine to train a learning model with varied number of clients.

2. We have developed an effective strategy to store the model weights/gradients in a

blockchain network that makes it secured and can be easily transferred to a request-

ing client under a different blockchain network.

3. We have intelligently designed the structure of the assets that need to be transferred

to verify the integrity of the model as well as perform transfer learning or similar

tasks.

4. we have used relay service which acts as a mediator for the transfer of assets. A

request for an asset is generated at the relay service in the requesting end and it

is forwarded to the relay service at the providing end. This helps to facilitate the

transfer of assets. We have used the collective signing methodology to sign and

verify the authenticity of the asset transferred.

5. Finally, we have experimented about the correctness of the weight transferred by

learning a model via transfer learning with the weights transferred as an intialization.

37



7. CONCLUSION AND FUTURE WORK

7.2 Future Works

In the system of interoperation developed, a single relay service can become a potential

bottleneck when the number of requests increases. Thus, as a next step, we would try to

allocate a single process or a thread to handle the transfer of request to a single requester.

That would solve the issue where a single process blocks the concurrent interoperability

requests.

We have used a single control and data channel to transfer the assets as well as

communicate with other relay services. However, a potential improvement is to segregate

the channel into a control channel and a separate data channel, which helps in maintaining

better concurrency for large scale experiments.

We have designed the asset to be transferred keeping in mind of the task of trans-

fer learning. However, we can use our system for Multi-Task Learning as well. A crude

proposition for entertaining such a system is to transfer not only the final asset containing

the latest global model, but also subsequent updates to the model. This would be con-

gruent to the idea where two learning heads can utilize the same shared weights to train.

This would be beneficial if two different FL setup under varying permissioned blockchain

network wants to collaborate among themselves to train a multi-task learning model.

Finally, we also plan to further validate our work large scale experiments pertaining

to higher-end models on larger datasets.
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